This paper studies the micro-cutting characteristics of aluminum alloy (2A12) based on a series of orthogonal experiments and finite element method (FEM) simulations. An energy-based ductile failure law was proposed i...This paper studies the micro-cutting characteristics of aluminum alloy (2A12) based on a series of orthogonal experiments and finite element method (FEM) simulations. An energy-based ductile failure law was proposed in the FEM simulation. The simulated cutting forces and chip morphology were compared with experimental results. The simulation result indicates that there is a close relationship between the cutting force and cutting heat. The micro-cutting force decreases as the heat flux vector increases. Both the cutting heat and the micro-cutting force need a finite time to achieve a steady state. It is observed that with the cutting speed of 169.95 m/min and uncut chip thickness of 6 μm, the heat flux vector in the workpiece increases to a stable value after 0.06 ms; meanwhile, the principal cutting force decreases to a steady state correspondingly, i.e., the micro-cutting process achieves the steady state. It is concluded that the steady state micro-cutting simulation can reflect the cutting process accurately.展开更多
Two separate experiments were conducted to evaluate the success of the establishment and growth of micro-cuttings of potato (5 - 6 cm tall) in sand trays [38 cm (L) × 28 cm (W) × 7.5 cm (H) plastic trays] un...Two separate experiments were conducted to evaluate the success of the establishment and growth of micro-cuttings of potato (5 - 6 cm tall) in sand trays [38 cm (L) × 28 cm (W) × 7.5 cm (H) plastic trays] under controlled environment (22?C ± 2?C, 60 - 75 μmosm–1?s–1 light energy for 16 h daily). In the first experiment, micro-cuttings of potato cv. Diamant were planted at six populations (500, 600, 700, 800, 900 and 1000 cuttings per tray) in treated sand (sun dry, 1% formaldehyde, 0.2% Dithane M-45 and control). The mortality percentage of micro-cuttings was nil for sun dry sand while formaldehyde and dithane M-45 treated sand had 1% - 4% against 15% in the control with the highest population density. Mortality of micro-cuttings in formaldehyde and dithane M-45 treated sand trays were found not to be related to pathogenic organism rather toxic effect of these two chemicals. Micro-cuttings in Sun dry and control treatments showed better growth performance than these in chemically treated sand trays. In the second experiment, urea @ 1, 2 and 3 g per tray was applied as solid form after 15 days of planting the micro-cuttings and as liquid form @ 0.5, 1 and 2% solution sprayed in the micro-cuttings repeatedly after 15, 30, 45 and 60 days of planting. The micro-cuttings which received urea as solid state died within 2 - 3 days and 2% urea solution was also detrimental. Urea solution @ 0.5% found to be very effective for vegetative growth of micro-cuttings in sand trays. The control was also good for vegetative growth but at a slower rate.展开更多
The miniaturisation context leads to the rise of micro-machining processes. Micro-milling is one of the most flexible and fast of them. Although it is based on the same principles as macro-cutting, it is not a simple ...The miniaturisation context leads to the rise of micro-machining processes. Micro-milling is one of the most flexible and fast of them. Although it is based on the same principles as macro-cutting, it is not a simple scaling-down of it. This down-sizing involves new phenomena in the chip formation, such as the minimum chip thickness below which no chip is formed. This paper presents a review of the current state of the art in this field from an experimental and a numerical point of view. A 2D finite element model is then developed to study the influence of the depth of cut on the chip formation. After the model validation in macro-cutting, it highlights the phenomena reported in literature and allows to perform a minimum chip thickness estimation.展开更多
The plasticity of metals can be significantly affected by the application of a magnetic field,otherwise known as the magneto-plastic effect.This paper investigates the magneto-plastic effect in the microcutting of a n...The plasticity of metals can be significantly affected by the application of a magnetic field,otherwise known as the magneto-plastic effect.This paper investigates the magneto-plastic effect in the microcutting of a non-magnetic ductile material,single-crystal copper,under a weak magnetic field and reports the influence of the phenomenon on the cutting forces and machined surface quality.A softening effect was observed from the large reduction in cutting forces from 3.2 N to 1.5 N under the magnetic field.As compared to the magnetic field intensity and polarity,the variation in magnetic field orientations with respect to the cutting direction exhibited a stronger influence on the cutting force,chip morphology,machined surface texture,subsurface microstructure,surface roughness,and machined surface microhardness of the copper sample.An analytical model was developed based on the geometry of the cutting chips to correlate the orientation-dependent influence of the magnetic field on the cutting forces.On the surface quality,excessive folds with four different types of morphology produced under magnetic-free cutting were suppressed after applying the magnetic field with the most significant improvement achieved with the 90°magnetic field direction.The magnetic-assisted changes in machined surface morphology also led to the reduction in machined surface roughness and microhardness.The optimistic micro-cutting outcomes in this work establish a greater understanding of the magneto-plastic effect and demonstrate the applicability of magneto-plasticity in ultraprecision manufacturing.展开更多
Magneto-plasticity occurs when a weak magnetic field alters material plasticity and offers a viable solution to enhance ductile-mode cutting of brittle materials.This study demonstrates the susceptibility of non-magne...Magneto-plasticity occurs when a weak magnetic field alters material plasticity and offers a viable solution to enhance ductile-mode cutting of brittle materials.This study demonstrates the susceptibility of non-magnetic single-crystal calcium fluoride(CaF_(2))to the magneto-plastic effect.The influence of magneto-plasticity on CaF_(2) was confirmed in micro-deformation tests under a weak magnetic field of 20 mT.The surface pile-up effect was weakened by 10-15 nm along with an enlarged plastic zone and suppressed crack propagation under the influence of the magnetic field.Micro-cutting tests along different crystal orientations on the(111)plane of CaF_(2) revealed an increase in the ductile-brittle transition of the machined surface with the aid of magneto-plasticity where the largest increase in ductile-brittle transition occurred along the[112]orientation from 512 nm to a range of 664-806 nm.Meanwhile,the subsurface damage layer was concurrently thinner under magnetic influence.An anisotropic influence of the magnetic field relative to the single-crystal orientation and the cutting direction was also observed.An analytical model was derived to determine an orientation factor M that successfully describes the anisotropy while considering the single-crystal dislocation behaviour,material fracture toughness,and the orientation of the magnetic field.Previously suggested theoretical mechanism of magneto-plasticity via formation of non-singlet electronic states in defected configurations was confirmed with density functional theory calculations.The successful findings on the influence of a weak magnetic field on plasticity present an opportunity for the adoption of magnetic-assisted micro-cutting of non-magnetic materials.展开更多
Better understanding of variations in the mechanical properties of cancer cells could help to provide novel solutions for the diagnosis,prevention,and treatment of cancers.We therefore developed a calculation model of...Better understanding of variations in the mechanical properties of cancer cells could help to provide novel solutions for the diagnosis,prevention,and treatment of cancers.We therefore developed a calculation model of the intracellular elastic modulus based on the contact pressure between the silicon tip of an atomic force microscope and the target cells,and cutting depth.Ovarian cells(UACC-1598) and colon cancer cells(NCI-H716) were cut into sequential layers using an atomic force microscope silicon tip.The cutting area on the cells was 8μm×8μm,and the loading force acting on the cells was increased from 17.523 to 32.126μN.The elastic modulus distribution was measured after each cutting process.There were significant differences in contact pressure and cutting depth between different cells under the same loading force,which could be attributed to differences in their intrinsic structures and mechanical properties.The differences between the average elastic modulus and surface elastic modulus for UACC-1598 and NCI-H716 cells were 0.288±0.08 kPa and 0.376±0.16 kPa,respectively.These results demonstrate that this micro-cutting method can be used to measure intracellular mechanical properties,which could in turn provide a more accurate experimental basis for the development of novel methods for the diagnosis and treatment of various diseases.展开更多
基金Supported by the National High Technology Research and Development Program of China ("863" Program, No.2008AA042509)
文摘This paper studies the micro-cutting characteristics of aluminum alloy (2A12) based on a series of orthogonal experiments and finite element method (FEM) simulations. An energy-based ductile failure law was proposed in the FEM simulation. The simulated cutting forces and chip morphology were compared with experimental results. The simulation result indicates that there is a close relationship between the cutting force and cutting heat. The micro-cutting force decreases as the heat flux vector increases. Both the cutting heat and the micro-cutting force need a finite time to achieve a steady state. It is observed that with the cutting speed of 169.95 m/min and uncut chip thickness of 6 μm, the heat flux vector in the workpiece increases to a stable value after 0.06 ms; meanwhile, the principal cutting force decreases to a steady state correspondingly, i.e., the micro-cutting process achieves the steady state. It is concluded that the steady state micro-cutting simulation can reflect the cutting process accurately.
文摘Two separate experiments were conducted to evaluate the success of the establishment and growth of micro-cuttings of potato (5 - 6 cm tall) in sand trays [38 cm (L) × 28 cm (W) × 7.5 cm (H) plastic trays] under controlled environment (22?C ± 2?C, 60 - 75 μmosm–1?s–1 light energy for 16 h daily). In the first experiment, micro-cuttings of potato cv. Diamant were planted at six populations (500, 600, 700, 800, 900 and 1000 cuttings per tray) in treated sand (sun dry, 1% formaldehyde, 0.2% Dithane M-45 and control). The mortality percentage of micro-cuttings was nil for sun dry sand while formaldehyde and dithane M-45 treated sand had 1% - 4% against 15% in the control with the highest population density. Mortality of micro-cuttings in formaldehyde and dithane M-45 treated sand trays were found not to be related to pathogenic organism rather toxic effect of these two chemicals. Micro-cuttings in Sun dry and control treatments showed better growth performance than these in chemically treated sand trays. In the second experiment, urea @ 1, 2 and 3 g per tray was applied as solid form after 15 days of planting the micro-cuttings and as liquid form @ 0.5, 1 and 2% solution sprayed in the micro-cuttings repeatedly after 15, 30, 45 and 60 days of planting. The micro-cuttings which received urea as solid state died within 2 - 3 days and 2% urea solution was also detrimental. Urea solution @ 0.5% found to be very effective for vegetative growth of micro-cuttings in sand trays. The control was also good for vegetative growth but at a slower rate.
文摘The miniaturisation context leads to the rise of micro-machining processes. Micro-milling is one of the most flexible and fast of them. Although it is based on the same principles as macro-cutting, it is not a simple scaling-down of it. This down-sizing involves new phenomena in the chip formation, such as the minimum chip thickness below which no chip is formed. This paper presents a review of the current state of the art in this field from an experimental and a numerical point of view. A 2D finite element model is then developed to study the influence of the depth of cut on the chip formation. After the model validation in macro-cutting, it highlights the phenomena reported in literature and allows to perform a minimum chip thickness estimation.
基金the Singapore Ministry of Education,under its Academic Research Funds(Grant No.:MOE-T2EP501200010 and MOE-T2EP50220-0010)。
文摘The plasticity of metals can be significantly affected by the application of a magnetic field,otherwise known as the magneto-plastic effect.This paper investigates the magneto-plastic effect in the microcutting of a non-magnetic ductile material,single-crystal copper,under a weak magnetic field and reports the influence of the phenomenon on the cutting forces and machined surface quality.A softening effect was observed from the large reduction in cutting forces from 3.2 N to 1.5 N under the magnetic field.As compared to the magnetic field intensity and polarity,the variation in magnetic field orientations with respect to the cutting direction exhibited a stronger influence on the cutting force,chip morphology,machined surface texture,subsurface microstructure,surface roughness,and machined surface microhardness of the copper sample.An analytical model was developed based on the geometry of the cutting chips to correlate the orientation-dependent influence of the magnetic field on the cutting forces.On the surface quality,excessive folds with four different types of morphology produced under magnetic-free cutting were suppressed after applying the magnetic field with the most significant improvement achieved with the 90°magnetic field direction.The magnetic-assisted changes in machined surface morphology also led to the reduction in machined surface roughness and microhardness.The optimistic micro-cutting outcomes in this work establish a greater understanding of the magneto-plastic effect and demonstrate the applicability of magneto-plasticity in ultraprecision manufacturing.
基金supported by the Ministry of Education,Singapore,under its Academic Research Funds(Grant Nos.:MOE-T2EP50120-0010,MOE-T2EP50220-0010)the funding from the Ministère des Relations Internationales et de la Francophonie du Québec,Coopération Québec-Singapour,with which this work was partially supported。
文摘Magneto-plasticity occurs when a weak magnetic field alters material plasticity and offers a viable solution to enhance ductile-mode cutting of brittle materials.This study demonstrates the susceptibility of non-magnetic single-crystal calcium fluoride(CaF_(2))to the magneto-plastic effect.The influence of magneto-plasticity on CaF_(2) was confirmed in micro-deformation tests under a weak magnetic field of 20 mT.The surface pile-up effect was weakened by 10-15 nm along with an enlarged plastic zone and suppressed crack propagation under the influence of the magnetic field.Micro-cutting tests along different crystal orientations on the(111)plane of CaF_(2) revealed an increase in the ductile-brittle transition of the machined surface with the aid of magneto-plasticity where the largest increase in ductile-brittle transition occurred along the[112]orientation from 512 nm to a range of 664-806 nm.Meanwhile,the subsurface damage layer was concurrently thinner under magnetic influence.An anisotropic influence of the magnetic field relative to the single-crystal orientation and the cutting direction was also observed.An analytical model was derived to determine an orientation factor M that successfully describes the anisotropy while considering the single-crystal dislocation behaviour,material fracture toughness,and the orientation of the magnetic field.Previously suggested theoretical mechanism of magneto-plasticity via formation of non-singlet electronic states in defected configurations was confirmed with density functional theory calculations.The successful findings on the influence of a weak magnetic field on plasticity present an opportunity for the adoption of magnetic-assisted micro-cutting of non-magnetic materials.
基金supported by the National Natural Science Foundation of China (51175124)the Self-Planned Task of State Key Laboratory of Robotics and System of Harbin Institute of Technology (SKLRS 200903C)
文摘Better understanding of variations in the mechanical properties of cancer cells could help to provide novel solutions for the diagnosis,prevention,and treatment of cancers.We therefore developed a calculation model of the intracellular elastic modulus based on the contact pressure between the silicon tip of an atomic force microscope and the target cells,and cutting depth.Ovarian cells(UACC-1598) and colon cancer cells(NCI-H716) were cut into sequential layers using an atomic force microscope silicon tip.The cutting area on the cells was 8μm×8μm,and the loading force acting on the cells was increased from 17.523 to 32.126μN.The elastic modulus distribution was measured after each cutting process.There were significant differences in contact pressure and cutting depth between different cells under the same loading force,which could be attributed to differences in their intrinsic structures and mechanical properties.The differences between the average elastic modulus and surface elastic modulus for UACC-1598 and NCI-H716 cells were 0.288±0.08 kPa and 0.376±0.16 kPa,respectively.These results demonstrate that this micro-cutting method can be used to measure intracellular mechanical properties,which could in turn provide a more accurate experimental basis for the development of novel methods for the diagnosis and treatment of various diseases.