期刊文献+
共找到11,248篇文章
< 1 2 250 >
每页显示 20 50 100
Docker API与SpringBoot Actuator未授权访问风险分析与防范研究
1
作者 贾美娟 李欣 +2 位作者 朱庆 张丽华 张百顺 《电脑与电信》 2024年第6期22-25,30,共5页
随着云计算技术的普及和容器化技术的发展,Docker和SpringBoot已成为现代软件开发和部署的重要工具。然而,这种广泛的使用也伴随着安全风险。针对DockerAPI与SpringBoot Actuator的未授权访问风险进行了深入分析。当这些关键组件暴露于... 随着云计算技术的普及和容器化技术的发展,Docker和SpringBoot已成为现代软件开发和部署的重要工具。然而,这种广泛的使用也伴随着安全风险。针对DockerAPI与SpringBoot Actuator的未授权访问风险进行了深入分析。当这些关键组件暴露于未授权访问之下时,攻击者可能利用这些漏洞执行恶意操作,如部署恶意容器、篡改应用程序配置或窃取敏感信息。这些行为不仅可能导致服务中断和数据泄露,还可能对企业造成严重的声誉和财务损失。 展开更多
关键词 Docker API SpringBoot actuator 未授权访问 风险分析与防范
下载PDF
Micro-displacement amplifying mechanism driven by piezoelectric actuator 被引量:10
2
作者 马浩全 胡德金 张凯 《Journal of Southeast University(English Edition)》 EI CAS 2004年第1期75-79,共5页
Piezoelectric actuator has high stiffness, high frequency and infinite control precision, but a short output displacement which is often 1/1 000 of its length. In order to meet the requirements that tools feeding shou... Piezoelectric actuator has high stiffness, high frequency and infinite control precision, but a short output displacement which is often 1/1 000 of its length. In order to meet the requirements that tools feeding should be long-travel, high-frequency and high-precision in non-circular precision turning, a new one-freedom flexure hinge structure is put forward to amplify the output displacement of piezoelectric actuator. Theoretical analysis is done on the static and dynamic characteristics of the structure, differential equations are presented, and it is also verified by the finite element method. It's proved by experiments that the output displacement of the structure is 293 μm and its resonant frequency is 312 Hz. 展开更多
关键词 piezoelectric actuator flexure hinge micro displacement amplifying structure
下载PDF
Path-Following Control With Obstacle Avoidance of Autonomous Surface Vehicles Subject to Actuator Faults 被引量:1
3
作者 Li-Ying Hao Gege Dong +1 位作者 Tieshan Li Zhouhua Peng 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期956-964,共9页
This paper investigates the path-following control problem with obstacle avoidance of autonomous surface vehicles in the presence of actuator faults,uncertainty and external disturbances.Autonomous surface vehicles in... This paper investigates the path-following control problem with obstacle avoidance of autonomous surface vehicles in the presence of actuator faults,uncertainty and external disturbances.Autonomous surface vehicles inevitably suffer from actuator faults in complex sea environments,which may cause existing obstacle avoidance strategies to fail.To reduce the influence of actuator faults,an improved artificial potential function is constructed by introducing the lower bound of actuator efficiency factors.The nonlinear state observer,which only depends on measurable position information of the autonomous surface vehicle,is used to address uncertainties and external disturbances.By using a backstepping technique and adaptive mechanism,a path-following control strategy with obstacle avoidance and fault tolerance is designed which can ensure that the tracking errors converge to a small neighborhood of zero.Compared with existing results,the proposed control strategy has the capability of obstacle avoidance and fault tolerance simultaneously.Finally,the comparison results through simulations are given to verify the effectiveness of the proposed method. 展开更多
关键词 actuator faults autonomous surface vehicle(ASVs) improved artificial potential function nonlinear state observer obstacle avoidance
下载PDF
High-performance liquid metal electromagnetic actuator fabricated by femtosecond laser
4
作者 Yiyu Chen Hao Wu +11 位作者 Rui Li Shaojun Jiang Shuneng Zhou Zehang Cui Yuan Tao Xinyuan Zheng Qianqian Zhang Jiawen Li Guoqiang Li Dong Wu Jiaru Chu Yanlei Hu 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期511-521,共11页
Small-scale electromagnetic soft actuators are characterized by a fast response and simplecontrol,holding prospects in the field of soft and miniaturized robotics.The use of liquid metal(LM)to replace a rigid conducto... Small-scale electromagnetic soft actuators are characterized by a fast response and simplecontrol,holding prospects in the field of soft and miniaturized robotics.The use of liquid metal(LM)to replace a rigid conductor inside soft actuators can reduce the rigidity and enhance the actuation performance and robustness.Despite research efforts,challenges persist in the flexible fabrication of LM soft actuators and in the improvement of actuation performance.To address these challenges,we developed a fast and robust electromagnetic soft microplate actuator based on a laser-induced selective adhesion transfer method.Equipped with unprecedentedly thin LM circuit and customized low Young’s modulus silicone rubber(1.03 kPa),our actuator exhibits an excellent deformation angle(265.25?)and actuation bending angular velocity(284.66 rad·s^(-1)).Furthermore,multiple actuators have been combined to build an artificial gripper with a wide range of functionalities.Our actuator presents new possibilities for designing small-scaleartificial machines and supports advancements in ultrafast soft and miniaturized robotics. 展开更多
关键词 soft actuators femtosecond laser liquid metal
下载PDF
Airfoil friction drag reduction based on grid-type and super-dense array plasma actuators
5
作者 方子淇 宗豪华 +2 位作者 吴云 梁华 苏志 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第2期94-103,共10页
To improve the cruise flight performance of aircraft, two new configurations of plasma actuators(grid-type and super-dense array) were investigated to reduce the turbulent skin friction drag of a low-speed airfoil. Th... To improve the cruise flight performance of aircraft, two new configurations of plasma actuators(grid-type and super-dense array) were investigated to reduce the turbulent skin friction drag of a low-speed airfoil. The induced jet characteristics of the two actuators in quiescent air were diagnosed with high-speed particle image velocimetry(PIV), and their drag reduction efficiencies were examined under different operating conditions in a wind tunnel. The results showed that the grid-type plasma actuator was capable of producing a wall-normal jet array(peak magnitude: 1.07 m/s) similar to that generated in a micro-blowing technique, while the superdense array plasma actuator created a wavy wall-parallel jet(magnitude: 0.94 m/s) due to the discrete spanwise electrostatic forces. Under a comparable electrical power consumption level,the super-dense array plasma actuator array significantly outperformed the grid-type configuration,reducing the total airfoil friction drag by approximately 22% at a free-stream velocity of 20 m/s.The magnitude of drag reduction was proportional to the dimensionless jet velocity ratio(r), and a threshold r = 0.014 existed under which little impact on airfoil drag could be discerned. 展开更多
关键词 plasma actuator flow control drag reduction AIRFOIL
下载PDF
Observer-based dynamic event-triggered control for distributed parameter systems over mobile sensor-plus-actuator networks
6
作者 穆文英 庄波 邱芳 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期237-243,共7页
We develop a policy of observer-based dynamic event-triggered state feedback control for distributed parameter systems over a mobile sensor-plus-actuator network.It is assumed that the mobile sensing devices that prov... We develop a policy of observer-based dynamic event-triggered state feedback control for distributed parameter systems over a mobile sensor-plus-actuator network.It is assumed that the mobile sensing devices that provide spatially averaged state measurements can be used to improve state estimation in the network.For the purpose of decreasing the update frequency of controller and unnecessary sampled data transmission, an efficient dynamic event-triggered control policy is constructed.In an event-triggered system, when an error signal exceeds a specified time-varying threshold, it indicates the occurrence of a typical event.The global asymptotic stability of the event-triggered closed-loop system and the boundedness of the minimum inter-event time can be guaranteed.Based on the linear quadratic optimal regulator, the actuator selects the optimal displacement only when an event occurs.A simulation example is finally used to verify that the effectiveness of such a control strategy can enhance the system performance. 展开更多
关键词 distributed parameter systems event-triggered control mobile sensors mobile actuators
下载PDF
A framework for dynamic modelling of railway track switches considering the switch blades,actuators and control systems
7
作者 Saikat Dutta Tim Harrison +2 位作者 Christopher Ward Roger Dixon Phil Winship 《Railway Engineering Science》 EI 2024年第2期162-176,共15页
The main contribution of this paper is the development and demonstration of a novel methodology that can be followed to develop a simulation twin of a railway track switch system to test the functionality in a digital... The main contribution of this paper is the development and demonstration of a novel methodology that can be followed to develop a simulation twin of a railway track switch system to test the functionality in a digital environment.This is important because,globally,railway track switches are used to allow trains to change routes;they are a key part of all railway networks.However,because track switches are single points of failure and safety-critical,their inability to operate correctly can cause significant delays and concomitant costs.In order to better understand the dynamic behaviour of switches during operation,this paper has developed a full simulation twin of a complete track switch system.The approach fuses finite element for the rail bending and motion,with physics-based models of the electromechanical actuator system and the control system.Hence,it provides researchers and engineers the opportunity to explore and understand the design space around the dynamic operation of new switches and switch machines before they are built.This is useful for looking at the modification or monitoring of existing switches,and it becomes even more important when new switch concepts are being considered and evaluated.The simulation is capable of running in real time or faster meaning designs can be iterated and checked interactively.The paper describes the modelling approach,demonstrates the methodology by developing the system model for a novel“REPOINT”switch system,and evaluates the system level performance against the dynamic performance requirements for the switch.In the context of that case study,it is found that the proposed new actuation system as designed can meet(and exceed)the system performance requirements,and that the fault tolerance built into the actuation ensures continued operation after a single actuator failure. 展开更多
关键词 Railway track switch Mathematical modelling Redundant actuation Finite element analysis
下载PDF
Fuzzy Proportional Integral Derivative control of a voice coil actuator system for adaptive deformable mirrors
8
作者 Ziqiang Cui Heng Zuo +4 位作者 Weikang Qiao Hao Li Fujia Du Yifan Wang Jinrui Guo 《Astronomical Techniques and Instruments》 CSCD 2024年第3期179-186,共8页
Research on adaptive deformable mirror technology for voice coil actuators(VCAs)is an important trend in the development of large ground-based telescopes.A voice coil adaptive deformable mirror contains a large number... Research on adaptive deformable mirror technology for voice coil actuators(VCAs)is an important trend in the development of large ground-based telescopes.A voice coil adaptive deformable mirror contains a large number of actuators,and there are problems with structural coupling and large temperature increases in their internal coils.Additionally,parameters of the traditional proportional integral derivative(PID)control cannot be adjusted in real-time to adapt to system changes.These problems can be addressed by introducing fuzzy control methods.A table lookup method is adopted to replace real-time calculations of the regular fuzzy controller during the control process,and a prototype platform has been established to verify the effectiveness and robustness of this process.Experimental tests compare the control performance of traditional and fuzzy proportional integral derivative(Fuzzy-PID)controllers,showing that,in system step response tests,the fuzzy control system reduces rise time by 20.25%,decreases overshoot by 78.24%,and shortens settling time by 67.59%.In disturbance rejection experiments,fuzzy control achieves a 46.09%reduction in the maximum deviation,indicating stronger robustness.The Fuzzy-PID controller,based on table lookup,outperforms the standard controller significantly,showing excellent potential for enhancing the dynamic performance and disturbance rejection capability of the voice coil motor actuator system. 展开更多
关键词 Adaptive optics Deformable mirror Voice coil actuator Fuzzy control
下载PDF
Actuator and sensor fault isolation in a class of nonlinear dynamical systems
9
作者 Hamed Tirandaz Christodoulos Keliris Marios M.Polycarpou 《Journal of Automation and Intelligence》 2024年第2期57-72,共16页
Fault isolation in dynamical systems is a challenging task due to modeling uncertainty and measurement noise,interactive effects of multiple faults and fault propagation.This paper proposes a unified approach for isol... Fault isolation in dynamical systems is a challenging task due to modeling uncertainty and measurement noise,interactive effects of multiple faults and fault propagation.This paper proposes a unified approach for isolation of multiple actuator or sensor faults in a class of nonlinear uncertain dynamical systems.Actuator and sensor fault isolation are accomplished in two independent modules,that monitor the system and are able to isolate the potential faulty actuator(s)or sensor(s).For the sensor fault isolation(SFI)case,a module is designed which monitors the system and utilizes an adaptive isolation threshold on the output residuals computed via a nonlinear estimation scheme that allows the isolation of single/multiple faulty sensor(s).For the actuator fault isolation(AFI)case,a second module is designed,which utilizes a learning-based scheme for adaptive approximation of faulty actuator(s)and,based on a reasoning decision logic and suitably designed AFI thresholds,the faulty actuator(s)set can be determined.The effectiveness of the proposed fault isolation approach developed in this paper is demonstrated through a simulation example. 展开更多
关键词 actuator and sensor fault isolation Adaptive approximation Observer-based fault diagnosis Reasoning-based decision logic
下载PDF
Practical prescribed-time fuzzy tracking control for uncertain nonlinear systems with time-varying actuators faults
10
作者 Shuxing Xuan Hongjing Liang Tingwen Huang 《Journal of Automation and Intelligence》 2024年第1期40-49,共10页
The paper investigates the practical prescribed-time fuzzy tracking control problem for a category of nonlinear system subject to time-varying actuator faults.The presence of unknown nonlinear dynamics and actuator fa... The paper investigates the practical prescribed-time fuzzy tracking control problem for a category of nonlinear system subject to time-varying actuator faults.The presence of unknown nonlinear dynamics and actuator faults makes achieving tracking control within a prescribed-time challenging.To tackle this issue,we propose a novel practical prescribed-time fuzzy tracking control strategy,which is independent of the initial state of the system and does not rely on precise modeling of the system and actuators.We apply the approximation capabilities of fuzzy logic systems to handle the unknown nonlinear functions and unidentified actuator faults in the system.The piecewise controller and adaptive law constructed based on piecewise prescribed time-varying function and backstepping technique method establish the theoretical framework of practical prescribed-time tracking control,and extend the range of prescribed-time tracking control to infinity.Regardless of the initial conditions,the proposed control strategy can guarantee that all signals remain uniformly bounded within the practical prescribed time in the presence of unknown nonlinear item and time-varying actuator faults.Simulation example is presented to demonstrate the effectiveness of the proposed control strategy. 展开更多
关键词 Prescribed-time tracking control Adaptive fuzzy control actuator faults Uncertain nonlinear system
下载PDF
Optical micro/nanofiber enabled tactile sensors and soft actuators:A review
11
作者 Lei Zhang Yuqi Zhen Limin Tong 《Opto-Electronic Science》 2024年第8期13-29,共17页
As a combination of fiber optics and nanotechnology,optical micro/nanofiber(MNF)is considered as an important multifunctional building block for fabricating various miniaturized photonic devices.With the rapid progres... As a combination of fiber optics and nanotechnology,optical micro/nanofiber(MNF)is considered as an important multifunctional building block for fabricating various miniaturized photonic devices.With the rapid progress in flexible optoelectronics,MNF has been emerging as a promising candidate for assembling tactile sensors and soft actuators owing to its unique optical and mechanical properties.This review discusses the advances in MNF enabled tactile sensors and soft actuators,specifically,focusing on the latest research results over the past 5 years and the applications in health monitoring,human-machine interfaces,and robotics.Future prospects and challenges in developing flexible MNF devices are also presented. 展开更多
关键词 flexible opto-electronic devices tactile sensors soft actuators optical micro/nanofibers
下载PDF
Design of a Novel Robotic Fish Structure Utilizing PVC Gel Actuators
12
作者 Ruyhan   Nazia Bibi +3 位作者 Sara Rahman Abdullah Al Hossain Newaz Abdul Kadir Nasir Uddin 《Modern Mechanical Engineering》 2024年第3期57-72,共16页
In this research work, it has been designed a bionic robot fish structure, can swim underwater. The active compact body is powered by eight sets of symmetric PVC gel actuators with a caudal fin. The robot’s 200 mm-lo... In this research work, it has been designed a bionic robot fish structure, can swim underwater. The active compact body is powered by eight sets of symmetric PVC gel actuators with a caudal fin. The robot’s 200 mm-long, fish structure design incorporates a 55.52 angle to optimize the fish dynamics movement. It’s a fast and smooth operation and can swim. The robot can swim fast and quietly by using the right positions and the appropriate actuators on PVC gel actuators. This design entails a unique architecture that enables the robot to move safely and unobtrusively at the same time, which makes it suitable equipment for different exploration and surveillance missions in the water with speed and silent operation as the foremost concern. 展开更多
关键词 Biomimetic Robotics Structural Design PVC Gel actuators Swimming Mechanisms
下载PDF
CPG Human Motion Phase Recognition Algorithm for a Hip Exoskeleton with VSA Actuator
13
作者 Jiaxuan Li Feng Jiang +6 位作者 Longhai Zhang Xun Wang Jinnan Duan Baichun Wei Xiulai Wang Ningling Ma Yutao Zhang 《Journal of Signal and Information Processing》 2024年第2期19-59,共41页
Due to the dynamic stiffness characteristics of human joints, it is easy to cause impact and disturbance on normal movements during exoskeleton assistance. This not only brings strict requirements for exoskeleton cont... Due to the dynamic stiffness characteristics of human joints, it is easy to cause impact and disturbance on normal movements during exoskeleton assistance. This not only brings strict requirements for exoskeleton control design, but also makes it difficult to improve assistive level. The Variable Stiffness Actuator (VSA), as a physical variable stiffness mechanism, has the characteristics of dynamic stiffness adjustment and high stiffness control bandwidth, which is in line with the stiffness matching experiment. However, there are still few works exploring the assistive human stiffness matching experiment based on VSA. Therefore, this paper designs a hip exoskeleton based on VSA actuator and studies CPG human motion phase recognition algorithm. Firstly, this paper puts forward the requirements of variable stiffness experimental design and the output torque and variable stiffness dynamic response standards based on human lower limb motion parameters. Plate springs are used as elastic elements to establish the mechanical principle of variable stiffness, and a small variable stiffness actuator is designed based on the plate spring. Then the corresponding theoretical dynamic model is established and analyzed. Starting from the CPG phase recognition algorithm, this paper uses perturbation theory to expand the first-order CPG unit, obtains the phase convergence equation and verifies the phase convergence when using hip joint angle as the input signal with the same frequency, and then expands the second-order CPG unit under the premise of circular limit cycle and analyzes the frequency convergence criterion. Afterwards, this paper extracts the plate spring modal from Abaqus and generates the neutral file of the flexible body model to import into Adams, and conducts torque-stiffness one-way loading and reciprocating loading experiments on the variable stiffness mechanism. After that, Simulink is used to verify the validity of the criterion. Finally, based on the above criterions, the signal mean value is removed using feedback structure to complete the phase recognition algorithm for the human hip joint angle signal, and the convergence is verified using actual human walking data on flat ground. 展开更多
关键词 Variable Stiffness actuator Plate Spring CPG Algorithm Convergence Criterion Human Motion Phase Recognition Simulink and Adams Co-Simulation
下载PDF
Study on Sealing Characteristics of Sliding Seal Assembly of Aircraft Hydraulic Actuator
14
作者 Weinan Li Saixin Shi +4 位作者 Hongxia Tang Liang Chen Jiawei Zhang Hao Tang Jianhua Zhao 《Instrumentation》 2024年第1期18-29,共12页
The hydraulic actuator,known as the"muscle"of military aircraft,is responsible for flight attitude adjustment,trajectory control,braking turn,landing gear retracting and other actions,which directly affect i... The hydraulic actuator,known as the"muscle"of military aircraft,is responsible for flight attitude adjustment,trajectory control,braking turn,landing gear retracting and other actions,which directly affect its flight efficiency and safety.However,the sealing assembly often has the situation of over-aberrant aperture fit clearance or critical over-aberrant clearance,which increases the failure probability and degree of movable seal failure,and directly affects the flight efficiency and safety of military aircraft.In this paper,the simulation model of hydraulic actuator seal combination is established by ANSYS software,and the sealing principle is described.The change curve of contact width and contact pressure of combination seal under the action of high-pressure fluid is drawn.The effects of different oil pressure,fit clearance and other parameters on the sealing performance are analyzed.Finally,the accelerated life test of sliding seal components is carried out on the hydraulic actuator accelerated life test rig,and the surface morphology is compared and analyzed.The research shows that the O-ring is the main sealing element and the role of the check ring is to protect and support the O-ring to prevent damage caused by squeezing into the fit clearance,so the check ring bears a large load and is prone to shear failure.Excessive fit clearance is the main factor affecting the damage of the check ring,and the damage parts are mainly concentrated at the edge of the sealing surface.This paper provides a theoretical basis for the design of hydraulic actuator and the improvement of sealing performance. 展开更多
关键词 hydraulic actuator contact stress sealing characteristics maximum shear stress
下载PDF
Fully Distributed Nash Equilibrium Seeking for High-Order Players With Actuator Limitations 被引量:4
15
作者 Maojiao Ye Qing-Long Han +1 位作者 Lei Ding Shengyuan Xu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第6期1434-1444,共11页
This paper explores the problem of distributed Nash equilibrium seeking in games, where players have limited knowledge on other players' actions. In particular, the involved players are considered to be high-order... This paper explores the problem of distributed Nash equilibrium seeking in games, where players have limited knowledge on other players' actions. In particular, the involved players are considered to be high-order integrators with their control inputs constrained within a pre-specified region. A linear transformation for players' dynamics is firstly utilized to facilitate the design of bounded control inputs incorporating multiple saturation functions. By introducing consensus protocols with adaptive and time-varying gains, the unknown actions for players are distributively estimated. Then, a fully distributed Nash equilibrium seeking strategy is exploited, showcasing its remarkable properties: (1) ensuring the boundedness of control inputs;(2) avoiding any global information/parameters;and (3) allowing the graph to be directed. Based on Lyapunov stability analysis, it is theoretically proved that the proposed distributed control strategy can lead all the players' actions to the Nash equilibrium. Finally, an illustrative example is given to validate effectiveness of the proposed method. 展开更多
关键词 actuator limitation directed networks GAMES Nash equilibrium
下载PDF
Adaptive Fixed-Time Control of Nonlinear MASs With Actuator Faults 被引量:4
16
作者 Hongru Ren Hui Ma +1 位作者 Hongyi Li Zhenyou Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第5期1252-1262,共11页
The adaptive fixed-time consensus problem for a class of nonlinear multi-agent systems(MASs)with actuator faults is considered in this paper.To approximate the unknown nonlinear functions in MASs,radial basis function... The adaptive fixed-time consensus problem for a class of nonlinear multi-agent systems(MASs)with actuator faults is considered in this paper.To approximate the unknown nonlinear functions in MASs,radial basis function neural networks are used.In addition,the first order sliding mode differentiator is utilized to solve the“explosion of complexity”problem,and a filter error compensation method is proposed to ensure the convergence of filter error in fixed time.With the help of the Nussbaum function,the actuator failure compensation mechanism is constructed.By designing the adaptive fixed-time controller,all signals in MASs are bounded,and the consensus errors between the leader and all followers converge to a small area of origin.Finally,the effectiveness of the proposed control method is verified by simulation examples. 展开更多
关键词 actuator faults adaptive fixed-time control multiagent systems(MASs) Nussbaum function
下载PDF
Bioinspired MXene-Based Soft Actuators Exhibiting Angle-Independent Structural Color 被引量:4
17
作者 Pan Xue Yuanhao Chen +7 位作者 Yiyi Xu Cristian Valenzuela Xuan Zhang Hari Krishna Bisoyi Xiao Yang Ling Wang Xinhua Xu Quan Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第1期1-13,共13页
In nature,many living organisms exhibiting unique structural coloration and soft-bodied actuation have inspired scientists to develop advanced structural colored soft actuators toward biomimetic soft robots.However,it... In nature,many living organisms exhibiting unique structural coloration and soft-bodied actuation have inspired scientists to develop advanced structural colored soft actuators toward biomimetic soft robots.However,it is challenging to simultaneously biomimic the angle-independent structural color and shape-morphing capabilities found in the plum-throated cotinga flying bird.Herein,we report biomimetic MXene-based soft actuators with angle-independent structural color that are fabricated through controlled self-assembly of colloidal SiO_(2) nanoparticles onto highly aligned MXene films followed by vacuum-assisted infiltration of polyvinylidene fluoride into the interstices.The resulting soft actuators are found to exhibit brilliant,angle-independent structural color,as well as ultrafast actuation and recovery speeds(a maximum curvature of 0.52 mm−1 can be achieved within 1.16 s,and a recovery time of~0.24 s)in response to acetone vapor.As proof-of-concept illustrations,structural colored soft actuators are applied to demonstrate a blue gripper-like bird’s claw that can capture the target,artificial green tendrils that can twine around tree branches,and an artificial multicolored butterfly that can flutter its wings upon cyclic exposure to acetone vapor.The strategy is expected to offer new insights into the development of biomimetic multifunctional soft actuators for somatosensory soft robotics and next-generation intelligent machines. 展开更多
关键词 Bioinspired soft actuator Angle-independent structural color MXene liquid crystals Soft robotics
下载PDF
Adaptive Leader-Follower Consensus Control of Multiple Flexible Manipulators With Actuator Failures and Parameter Uncertainties 被引量:3
18
作者 Yu Liu Lin Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第4期1020-1031,共12页
In this paper,the leader-follower consensus problem for a multiple flexible manipulator network with actuator failures,parameter uncertainties,and unknown time-varying boundary disturbances is addressed.The purpose of... In this paper,the leader-follower consensus problem for a multiple flexible manipulator network with actuator failures,parameter uncertainties,and unknown time-varying boundary disturbances is addressed.The purpose of this study is to develop distributed controllers utilizing local interactive protocols that not only suppress the vibration of each flexible manipulator but also achieve consensus on joint angle position between actual followers and the virtual leader.Following the accomplishment of the reconstruction of the fault terms and parameter uncertainties,the adaptive neural network method and parameter estimation technique are employed to compensate for unknown items and bounded disturbances.Furthermore,the Lyapunov stability theory is used to demonstrate that followers’angle consensus errors and vibration deflections in closed-loop systems are uniformly ultimately bounded.Finally,the numerical simulation results confirm the efficacy of the proposed controllers. 展开更多
关键词 actuator failures leader-follower consensus multiple flexible manipulators neural network parameter uncertainties
下载PDF
Importance of Three-Dimensional Piezoelectric Coupling Modeling in Quantitative Analysis of Piezoelectric Actuators 被引量:1
19
作者 Daisuke Ishihara Prakasha Chigahalli Ramegowda +1 位作者 Shoichi Aikawa Naoki Iwamaru 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第8期1187-1206,共20页
This paper demonstrates the importance of three-dimensional(3-D)piezoelectric coupling in the electromechanical behavior of piezoelectric devices using three-dimensional finite element analyses based on weak and stron... This paper demonstrates the importance of three-dimensional(3-D)piezoelectric coupling in the electromechanical behavior of piezoelectric devices using three-dimensional finite element analyses based on weak and strong coupling models for a thin cantilevered piezoelectric bimorph actuator.It is found that there is a significant difference between the strong and weak coupling solutions given by coupling direct and inverse piezoelectric effects(i.e.,piezoelectric coupling effect).In addition,there is significant longitudinal bending caused by the constraint of the inverse piezoelectric effect in the width direction at the fixed end(i.e.,3-D effect).Hence,modeling of these effects or 3-D piezoelectric coupling modeling is an electromechanical basis for the piezoelectric devices,which contributes to the accurate prediction of their behavior. 展开更多
关键词 Piezoelectric coupling effect piezoelectric bimorph actuator weak coupling strong coupling three-dimensional finite element analysis
下载PDF
Distributed fault diagnosis observer for multi-agent system against actuator and sensor faults 被引量:1
20
作者 YE Zhengyu JIANG Bin +2 位作者 CHENG Yuehua YU Ziquan YANG Yang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第3期766-774,共9页
Component failures can cause multi-agent system(MAS)performance degradation and even disasters,which provokes the demand of the fault diagnosis method.A distributed sliding mode observer-based fault diagnosis method f... Component failures can cause multi-agent system(MAS)performance degradation and even disasters,which provokes the demand of the fault diagnosis method.A distributed sliding mode observer-based fault diagnosis method for MAS is developed in presence of actuator and sensor faults.Firstly,the actuator and sensor faults are extended to the system state,and the system is transformed into a descriptor system form.Then,a sliding mode-based distributed unknown input observer is proposed to estimate the extended state.Furthermore,adaptive laws are introduced to adjust the observer parameters.Finally,the effectiveness of the proposed method is demonstrated with numerical simulations. 展开更多
关键词 multi-agent system(MAS) sensor fault actuator fault unknown input observer sliding mode fault diagnosis
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部