Purpose: This study focused on maintaining and improving the walking function of late-stage older individuals while longitudinally tracking the effects of regular exercise programs in a day-care service specialized fo...Purpose: This study focused on maintaining and improving the walking function of late-stage older individuals while longitudinally tracking the effects of regular exercise programs in a day-care service specialized for preventive care over 5 years, using detailed gait function measurements with an accelerometer-based system. Methods: Seventy individuals (17 male and 53 female) of a daycare service in Tokyo participated in a weekly exercise program, meeting 1 - 2 times. The average age of the participants at the start of the program was 81.4 years. Gait function, including gait speed, stride length, root mean square (RMS) of acceleration, gait cycle time and its standard deviation, and left-right difference in stance time, was evaluated every 6 months. Results: Gait speed and stride length improved considerably within six months of starting the exercise program, confirming an initial improvement in gait function. This suggests that regular exercise programs can maintain or improve gait function even age groups that predictably have a gradual decline in gait ability due to enhanced age. In the long term, many indicators tended to approach baseline values. However, the exercise program seemingly counteracts age-related changes in gait function and maintains a certain level of function. Conclusions: While a decline in gait ability with aging is inevitable, establishing appropriate exercise habits in late-stage older individuals may contribute to long-term maintenance of gait function.展开更多
In allusion to the limitations of the traditional attitude measurement system consisting of a three-axis magnetic sensor and two accelerometers on high-spinning projectile, a new scheme comprised of two magnetic senso...In allusion to the limitations of the traditional attitude measurement system consisting of a three-axis magnetic sensor and two accelerometers on high-spinning projectile, a new scheme comprised of two magnetic sensors and two accelerometers installed in a particular way is given. The configuration of the sensors is described. The calculation method and the mathematical model of the projectile attitude based on the sensor configuration are discussed. The basic calculation method including the Magsonde Window, the proof of the ratios of maximums and minimums and the calculation of the attitude angles are analyzed in theory. Finally, the system is simulated under the given conditions. The simulation result indicates that the estimated attitude angles are in agreement with the true attitude angles.展开更多
This paper presents two approaches for system-level simulation of force-balance accelerometers. The derivation of the system-level model is elaborated and simulation results are obtained from the implementation of tho...This paper presents two approaches for system-level simulation of force-balance accelerometers. The derivation of the system-level model is elaborated and simulation results are obtained from the implementation of those strategies on the fabricated silicon force-balance MEMS accelerometer. The mathematical model presented is implemented in VHDL- AMS and SIMULINK TM,respectively. The simulation results from the two approaches are compared and show a slight difference. Using VHDL-AMS is flexible,reusable,and more accurate. But there is not a mature solver developed for the language and this approach takes more time, while the simulation model can be easily built and quickly evaluated using SIMULINK.展开更多
In view of the problem that the current single-antenna GPS attitude determination system can only determine the body attitude when the sideslip angle is zero and the multiantenna GPS/SINS integrated navigation system ...In view of the problem that the current single-antenna GPS attitude determination system can only determine the body attitude when the sideslip angle is zero and the multiantenna GPS/SINS integrated navigation system is of large volume, high cost, and complex structure, this approach is presented to determine the attitude based on vector space with single-antenna GPS and accelerometers in the micro inertial measurement unit (MIMU). It can provide real-time and accurate attitude information. Subsequently, the single-antenna GPS/SINS integrated navigation system is designed based on the combination of position, velocity, and attitude. Finally the semi- physical simulations of single-antenna GPS attitude determination system and single-antenna GPS/SINS integrated navigation system are carried out. The simulation results, based on measured data, show that the single-antenna GPS/SINS system can provide more accurate navigation information compared to the GPS/SINS system, based on the combination of position and velocity. Furthermore, the single-antenna GPS/SINS system is characteristic of lower cost and simpler structure. It provides the basis for the application of a single-antenna GPS/SINS integrated navigation system in a micro aerial vehicle (MAV).展开更多
This paper reports a piezoelectric nanogenerator(NG) with a thickness of approximately 80 μm for miniaturized self-powered acceleration sensors. To deposit the piezoelectric zinc oxide(ZnO) thin film, a magnetron spu...This paper reports a piezoelectric nanogenerator(NG) with a thickness of approximately 80 μm for miniaturized self-powered acceleration sensors. To deposit the piezoelectric zinc oxide(ZnO) thin film, a magnetron sputtering machine was used. Polymethyl methacrylate(PMMA) and aluminum-doped zinc oxide(AZO) were used as the insulating layer and the top electrode of the NG, respectively. The experimental results show that the ZnO thin films annealed at 150℃ exhibited the highest crystallinity among the prepared films and an optical band gap of 3.24 eV. The NG fabricated with an AZO/PMMA/ZnO/stainless steel configuration exhibited a higher output voltage than the device with an AZO/ZnO/PMMA/stainless steel configuration. In addition, the annealing temperature affected the open-circuit voltage of the NGs;the output voltage reached 3.81 V when the annealing temperature was 150℃. The open-circuit voltage of the prepared self-powered accelerometer increased linearly with acceleration. In addition, the small NG-based accelerometer, which exhibited excellent fatigue resistance, can be used for acceleration measurements of small and lightweight devices.展开更多
Micro-Opto-Electro-Mechanical Systems(MOEMS)accelerometer is a new type of accelerometer which combines the merits of optical measurement and Micro-Electro-Mechanical Systems(MEMS)to enable high precision,small volume...Micro-Opto-Electro-Mechanical Systems(MOEMS)accelerometer is a new type of accelerometer which combines the merits of optical measurement and Micro-Electro-Mechanical Systems(MEMS)to enable high precision,small volume and anti-electromagnetic disturbance measurement of acceleration.In recent years,with the in-depth research and development of MOEMS accelerometers,the community is flourishing with the possible applications in seismic monitoring,inertial navigation,aerospace and other industrial and military fields.There have been a variety of schemes of MOEMS accelerometers,whereas the performances differ greatly due to different measurement principles and corresponding application requirements.This paper aims to address the pressing issue of the current lack of systematic review of MOEMS accelerometers.According to the optical measurement principle,we divide the MOEMS accelerometers into three categories:the geometric optics based,the wave optics based,and the new optomechanical accelerometers.Regarding the most widely studied category,the wave optics based accelerometers are further divided into four sub-categories,which is based on grating interferometric cavity,Fiber Bragg Grating(FBG),Fabry-Perot cavity,and photonic crystal,respectively.Following a brief introduction to the measurement principles,the typical performances,advantages and disadvantages as well as the potential application scenarios of all kinds of MOEMS accelerometers are discussed on the basis of typical demonstrations.This paper also presents the status and development tendency of MOEMS accelerometers to meet the ever-increasing demand for high-precision acceleration measurement.展开更多
Tremor is a manifestation of a variety of human neurodegenerative diseases, notably Parkinson’s disease (PD) and Essential Tremor (ET), both affecting millions worldwide. PD is primarily caused by a progressive loss ...Tremor is a manifestation of a variety of human neurodegenerative diseases, notably Parkinson’s disease (PD) and Essential Tremor (ET), both affecting millions worldwide. PD is primarily caused by a progressive loss of dopamine neurons in the nigrostriatal system that leads to widespread motor symptoms such as bradykinesia, rigidity, tremor and postural instability. ET typically involves a tremor of the arms, hands or fingers. No definitive test or biomarker is yet available for PD or ET, so the rate of misdiagnosis is relatively high. As tremor is a very common feature at the onset of both diseases, it is crucial to be able to characterize it. This is made possible using acce?lerometers to quantify the tremor amplitude and frequency. In this work we aim to find tasks involving upper limb movements that are suitable to modulate both types of tremor. Four tasks were tested, differing on whether the arms moved together or alternatingly and whether loads were added. Significant differences in tremor measures were found when patients were asked to perform simultaneous rapid arms movements with loads placed on their wrists. These results may allow the design of an efficient fMRI protocol for identifying the cortical circuits responsible for the modulation of tremor.展开更多
The rapid development of MEMS technology has made MEMS accelerometers mature and the application range has been expanded. Many kinds of MEMS accelerometers are researched. According to the working principle of MEMS ac...The rapid development of MEMS technology has made MEMS accelerometers mature and the application range has been expanded. Many kinds of MEMS accelerometers are researched. According to the working principle of MEMS accelerometer, it can be divided into: piezoresistive, piezoelectric, capacitive, tunnel, resonant, electromagnetic, thermocouple, optical, inductive, etc. Due to its outstanding features in terms of size, quality, power consumption and reliability, MEMS sensors are used in military applications and where high environmental resistance is required. MEMS accelerometers are developing rapidly and have good application prospects. In order to make MEMS accelerometers more widely understood, the advantages of MEMS accelerometers are expounded. The research status of MEMS accelerometers is introduced, and MEMS are analyzed. The application of accelerometers in real-world environments, and the development trend of MEMS accelerometers in the future. More scholars will invest in MEMS accelerometer research, pursuing high performance, low power consumption, high precision, multi-function, and interaction. Strong MEMS accelerometers will be ubiquitous in the future.展开更多
With the recent development of digital Micro Electro Mechanical System (MEMS) sensors, the cost of monitoring and detecting seismic events in real time can be greatly reduced. Ability of MEMS accelerograph to record...With the recent development of digital Micro Electro Mechanical System (MEMS) sensors, the cost of monitoring and detecting seismic events in real time can be greatly reduced. Ability of MEMS accelerograph to record a seismic event depends upon the efficiency of triggering algorithm, apart from the sensor's sensitivity. There are several classic triggering algorithms developed to detect seismic events, ranging from basic amplitude threshold to more sophisticated pattern recognition. Algorithms based on STA/LTA are reported to be computationally efficient for real time monitoring. In this paper, we analyzed several STA/LTA algorithms to check their efficiency and suitability using data obtained from the Quake Catcher Network (network of MEMS accelerometer stations). We found that most of the STA/LTA algorithms are suitable for use with MEMS accelerometer data to accurately detect seismic events. However, the efficiency of any particular algorithm is found to be dependent on the parameter set used (i.e., window width of STA, LTA and threshold level).展开更多
Single-axis rotation technique is often used in the marine laser inertial navigation system so as to modulate the constant biases of non-axial gyroscopes and accelerometers to attain better navigation performance.Howe...Single-axis rotation technique is often used in the marine laser inertial navigation system so as to modulate the constant biases of non-axial gyroscopes and accelerometers to attain better navigation performance.However,two significant accelerometer nonlinear errors need to be attacked to improve the modulation effect.Firstly,the asymmetry scale factor inaccuracy enlarges the errors of frequent zero-cross oscillating specific force measured by non-axial accelerometers.Secondly,the traditional linear model of accelerometers can hardly measure the continued or intermittent acceleration accurately.These two nonlinear errors degrade the high-precision specific force measurement and the calibration of nonlinear coefficients because triaxial accelerometers is urgent for the marine navigation.Based on the digital signal sampling property,the square coefficients and cross-coupling coefficients of accelerometers are considered.Meanwhile,the asymmetry scale factors are considered in the I-F conversion unit.Thus,a nonlinear model of specific force measurement is established compared to the linear model.Based on the three-axis turntable,the triaxial gyroscopes are utilized to measure the specific force observation for triaxial accelerometers.Considering the nonlinear combination,the standard calibration parameters and asymmetry factors are separately estimated by a two-step iterative identification procedure.Besides,an efficient specific force calculation model is approximately derived to reduce the real-time computation cost.Simulation results illustrate the sufficient estimation accuracy of nonlinear coefficients.The experiments demonstrate that the nonlinear model shows much higher accuracy than the linear model in both the gravimetry and sway navigation validations.展开更多
A program of adaptive quadrature demodulation is proposed to supply the gaps in the traditional analog detection technology of a silicon micro-machined gyroscope (SMG). This program is suitable for digital phase locke...A program of adaptive quadrature demodulation is proposed to supply the gaps in the traditional analog detection technology of a silicon micro-machined gyroscope (SMG). This program is suitable for digital phase locked loop (DPLL) drive technology that proposed in other papers. In addition the program adopts an adaptive filtering algorithm, which selects the in-phase and quadrature components that are outputs of the DPLL of the SMG's drive mode as reference signals to update the amplitude of the in-phase and quadrature components of the input signal by iteratively. An objective of the program is to minimize the mean square error of the accurate amplitudes and the estimated amplitudes of SMG's detection mode. The simulation and test results prove the feasibility of the program that lays the foundation for the further improvement of the SMG's system performance and the implementation of the SMG system's self-calibration and self-demarcation in future.展开更多
This article presents the modal frequency recordings of a rigid bridge, monitored by the GPS receivers (Global Positioning System) with a data recording rate of 100 Hz and accelerometers. The GPS data processing was p...This article presents the modal frequency recordings of a rigid bridge, monitored by the GPS receivers (Global Positioning System) with a data recording rate of 100 Hz and accelerometers. The GPS data processing was performed through the double-difference phase, using the adjusted interferometry technique (i.e. phase residue method—PRM®). In the method, the double-difference phase of the carrier L1 is realized by using two satellites only, one was positioned at the zenith of the structure and the other satellite was positioned near the horizon. The results of the parametric adjustment of the PRM observations were finalized through software Interferometry, mathematical algorithm were applied and compared with the accelerometer. The comparison served to validate the use of GPS as a fast and reliable instrument for the preliminary monitoring of the dynamic behavior of the bridge, road artworks which are common in several countries, especially in the Brazilian road network. The data time series from the GPS and accelerometers were processed using the Wavelet. The detection of frequencies means that the combination of 100 Hz GPS receivers and the PRM allows detecting vibrations up to 5 mm. It presented significant results which were never obtained by the Fourier Transform.展开更多
A new integrated measuring system with eight force-balance accelerometers is proposed to obtain a direct measurement of six degree-of freedom (DOF) ground motions, including three rotational and three actual transla...A new integrated measuring system with eight force-balance accelerometers is proposed to obtain a direct measurement of six degree-of freedom (DOF) ground motions, including three rotational and three actual translational acceleration components without gyroscopes. In the proposed measuring system, the relationship between the output from eight force-balance accelerometer and the six DOF motion of the measuring system under an earthquake are described by differential equations. These equations are derived from the positions and directions of the eight force-balance accelerometers in the measuring system. The third-order Runge-Kutta algorithm is used to guarantee the accuracy of the numerical calculation. All the algorithms used to compute the six DOF components of the ground motion are implemented in a real-time in Digital Signal Processor (DSP). The distortion of the measured results caused by position and direction errors of the accelerometers in the measuring system are reduced by multiplying a compensation coefficient C to the output and subtracting static zero drift from the measured results, respectively.展开更多
Purpose:The aim of the current study was to investigate the association of accelerometer-measured sleep duration and different intensities of physical activity(PA)with the risk of incident type 2 diabetes in a populat...Purpose:The aim of the current study was to investigate the association of accelerometer-measured sleep duration and different intensities of physical activity(PA)with the risk of incident type 2 diabetes in a population-based prospective cohort study.Methods:Altogether,88,000 participants(mean age=62.2±7.9 years,mean±SD)were included from the UK Biobank.Sleep duration(short:<6 h/day;normal:6-8 h/day;long:>8 h/day)and PA of different intensities were measured using a wrist-won accelerometer over a 7-day period between 2013 and 2015.PA was classified according to the median or World Health Organization-recommendation:total volume of PA(high,low),moderate-to-vigorous PA(MVPA)(recommended,not recommended),and light-intensity PA(high,low).Incidence of type 2diabetes was ascertained using hospital records or death registries.Results:During a median follow-up of 7.0 years,1615 incident type 2 diabetes cases were documented.Compared with normal sleep duration,short(hazard ratio(HR)=1.21,95%confidence interval(95%CI):1.03-1.41)but not long sleep duration(HR=1.01,95%CI:0.89-1.15)was associated with excessive type 2 diabetes risk.This increased risk among short sleepers seems to be protected against by PA.Compared with normal sleepers with high or recommended PA,short sleepers with low volume of PA(HR=1.81,95%CI:1.46-2.25),not recommended(below the World Health Organization-recommended level of)MVPA(HR=1.92,95%CI:1.55-2.36),or low light-intensity PA(HR=1.49,95%CI:1.13-1.90)had a higher risk of type 2 diabetes,while short sleepers with a high volume of PA(HR=1.14,95%CI:0.88-1.49),recommended MVPA(HR=1.02,95%CI:0.71-1.48),or high light-intensity PA(HR=1.14,95%CI:0.92-1.41)did not.Conclusion:Accelerometer-measured short but not long sleep duration was associated with a higher risk of incident type 2 diabetes.A higher level of PA,regardless of intensity,potentially ameliorates this excessive risk.展开更多
MEMS accelerometers are widely used in various fields due to their small size and low cost,and have good application prospects.However,the low accuracy limits its range of applications.To ensure data accuracy and safe...MEMS accelerometers are widely used in various fields due to their small size and low cost,and have good application prospects.However,the low accuracy limits its range of applications.To ensure data accuracy and safety we need to calibrate MEMS accelerometers.Many authors have improved accelerometer accuracy by calculating calibration parameters,and a large number of published calibration methods have been confusing.In this context,this paper introduces these techniques and methods,analyzes and summarizes the main error models and calibration procedures,and provides useful suggestions.Finally,the content of the accelerometer calibration method needs to be overcome.展开更多
In the past,only one performance parameter was considered in the reliability estimation of micro-electro-mechanical system (MEMS) accelerometers,resulting in a one-sided reliability evaluation. Aiming at the failure c...In the past,only one performance parameter was considered in the reliability estimation of micro-electro-mechanical system (MEMS) accelerometers,resulting in a one-sided reliability evaluation. Aiming at the failure condition of large range MEMS accelerometers in high temperature environment,the corresponding accelerated degradation test is designed. According to the degradation condition of zero bias and scale factor,multiple dependent reliability estimation of large range MEMS accelerometers is carried out. The results show that the multiple dependent reliability estimation of the large range MEMS accelerometers can improve the accuracy of the estimation and get more accurate results.展开更多
Analyzing physical activities through wearable devices is a promising research area for improving health assessment.This research focuses on the development of an affordable and real-time Human Activity Recognition(HA...Analyzing physical activities through wearable devices is a promising research area for improving health assessment.This research focuses on the development of an affordable and real-time Human Activity Recognition(HAR)system designed to operate on low-performance microcontrollers.The system utilizes data from a bodyworn accelerometer to recognize and classify human activities,providing a cost-effective,easy-to-use,and highly accurate solution.A key challenge addressed in this study is the execution of efficient motion recognition within a resource-constrained environment.The system employs a Random Forest(RF)classifier,which outperforms Gradient Boosting Decision Trees(GBDT),Support Vector Machines(SVM),and K-Nearest Neighbors(KNN)in terms of accuracy and computational efficiency.The proposed features Average absolute deviation(AAD),Standard deviation(STD),Interquartile range(IQR),Range,and Root mean square(RMS).The research has conducted numerous experiments and comparisons to establish optimal parameters for ensuring system effectiveness,including setting a sampling frequency of 50 Hz and selecting an 8-s window size with a 40%overlap between windows.Validation was conducted on both the WISDM public dataset and a self-collected dataset,focusing on five fundamental daily activities:Standing,Sitting,Jogging,Walking,and Walking the stairs.The results demonstrated high recognition accuracy,with the system achieving 96.7%on the WISDM dataset and 97.13%on the collected dataset.This research confirms the feasibility of deploying HAR systems on low-performance microcontrollers and highlights the system’s potential applications in patient support,rehabilitation,and elderly care.展开更多
The nitrogen-vacancy (NV) center quantum systems have emerged as versatile tools in the field of precision measurement because of their high sensitivity in spin state detection and miniaturization potential as solid-s...The nitrogen-vacancy (NV) center quantum systems have emerged as versatile tools in the field of precision measurement because of their high sensitivity in spin state detection and miniaturization potential as solid-state platforms.In this paper,an acceleration sensing scheme based on NV spin–strain coupling is proposed,which can effectively eliminate the influence of the stray noise field introduced by traditional mechanical schemes.Through the finite element simulation,it is found that the measurement bandwidth of this ensemble NV spin system ranges from 3 kHz to hundreds of kHz with structure√optimization.The required power is at the sub-μW level,corresponding to a noise-limited sensitivity of 6.7×10^(-5) /√Hz.Compared with other types of accelerometers,this micro-sized diamond sensor proposed here has low power consumption,exquisite sensitivity,and integration potential.This research opens a fresh perspective to realize an accelerometer with appealing comprehensive performance applied in biomechanics and inertial measurement fields.展开更多
A calculation and test method for the natural frequency of a high-g micro accelerometer with complex structures is presented. A universal formula for natural frequency, which can significantly simplify the structural ...A calculation and test method for the natural frequency of a high-g micro accelerometer with complex structures is presented. A universal formula for natural frequency, which can significantly simplify the structural design process, is deduced and confirmed by experiment. A simplified analytical model is established to describe the accelerometer's mechanical behavior and deduce the formula for the natural frequency. Finite element modeling is also conducted to evaluate the natural frequency of the micro-accelerometer and verify the formula. The results obtained from the analytical model and the finite element simulation show good agreement. Finally, a shock comparison method designed for acquiring the high frequency characteristics of the accelerometer is introduced to verify the formula by testing its actual natural frequency.展开更多
Resonant accelerometer is designed,which includes two double-ended tuning forks,a proof mass,four-leverage system amplifying inertial force,and drive/sense combs.Each tuning fork is electrostatically actuated and sens...Resonant accelerometer is designed,which includes two double-ended tuning forks,a proof mass,four-leverage system amplifying inertial force,and drive/sense combs.Each tuning fork is electrostatically actuated and sensed at resonance using comb electrodes.The device is fabricated using MEMS bulk-silicon technology,whose sensitive degree is 27 3Hz/g,and the resolution is 167 8μg.展开更多
文摘Purpose: This study focused on maintaining and improving the walking function of late-stage older individuals while longitudinally tracking the effects of regular exercise programs in a day-care service specialized for preventive care over 5 years, using detailed gait function measurements with an accelerometer-based system. Methods: Seventy individuals (17 male and 53 female) of a daycare service in Tokyo participated in a weekly exercise program, meeting 1 - 2 times. The average age of the participants at the start of the program was 81.4 years. Gait function, including gait speed, stride length, root mean square (RMS) of acceleration, gait cycle time and its standard deviation, and left-right difference in stance time, was evaluated every 6 months. Results: Gait speed and stride length improved considerably within six months of starting the exercise program, confirming an initial improvement in gait function. This suggests that regular exercise programs can maintain or improve gait function even age groups that predictably have a gradual decline in gait ability due to enhanced age. In the long term, many indicators tended to approach baseline values. However, the exercise program seemingly counteracts age-related changes in gait function and maintains a certain level of function. Conclusions: While a decline in gait ability with aging is inevitable, establishing appropriate exercise habits in late-stage older individuals may contribute to long-term maintenance of gait function.
文摘In allusion to the limitations of the traditional attitude measurement system consisting of a three-axis magnetic sensor and two accelerometers on high-spinning projectile, a new scheme comprised of two magnetic sensors and two accelerometers installed in a particular way is given. The configuration of the sensors is described. The calculation method and the mathematical model of the projectile attitude based on the sensor configuration are discussed. The basic calculation method including the Magsonde Window, the proof of the ratios of maximums and minimums and the calculation of the attitude angles are analyzed in theory. Finally, the system is simulated under the given conditions. The simulation result indicates that the estimated attitude angles are in agreement with the true attitude angles.
文摘This paper presents two approaches for system-level simulation of force-balance accelerometers. The derivation of the system-level model is elaborated and simulation results are obtained from the implementation of those strategies on the fabricated silicon force-balance MEMS accelerometer. The mathematical model presented is implemented in VHDL- AMS and SIMULINK TM,respectively. The simulation results from the two approaches are compared and show a slight difference. Using VHDL-AMS is flexible,reusable,and more accurate. But there is not a mature solver developed for the language and this approach takes more time, while the simulation model can be easily built and quickly evaluated using SIMULINK.
基金the Astronautic Technology Foundation (HTZC0405)
文摘In view of the problem that the current single-antenna GPS attitude determination system can only determine the body attitude when the sideslip angle is zero and the multiantenna GPS/SINS integrated navigation system is of large volume, high cost, and complex structure, this approach is presented to determine the attitude based on vector space with single-antenna GPS and accelerometers in the micro inertial measurement unit (MIMU). It can provide real-time and accurate attitude information. Subsequently, the single-antenna GPS/SINS integrated navigation system is designed based on the combination of position, velocity, and attitude. Finally the semi- physical simulations of single-antenna GPS attitude determination system and single-antenna GPS/SINS integrated navigation system are carried out. The simulation results, based on measured data, show that the single-antenna GPS/SINS system can provide more accurate navigation information compared to the GPS/SINS system, based on the combination of position and velocity. Furthermore, the single-antenna GPS/SINS system is characteristic of lower cost and simpler structure. It provides the basis for the application of a single-antenna GPS/SINS integrated navigation system in a micro aerial vehicle (MAV).
基金supported by the National Natural Science Foundation of China (No. 61671017)Key Project of Excellent Youth Talent Support Program in Colleges and Universities of Anhui Province (No. gxyqZD2018004)+1 种基金Provincial Natural Science Foundation of Anhui Higher Education Institution of China (No. KJ2016A787)Anhui Provincial Natural Science Foundation of China (No. 1508085ME72)
文摘This paper reports a piezoelectric nanogenerator(NG) with a thickness of approximately 80 μm for miniaturized self-powered acceleration sensors. To deposit the piezoelectric zinc oxide(ZnO) thin film, a magnetron sputtering machine was used. Polymethyl methacrylate(PMMA) and aluminum-doped zinc oxide(AZO) were used as the insulating layer and the top electrode of the NG, respectively. The experimental results show that the ZnO thin films annealed at 150℃ exhibited the highest crystallinity among the prepared films and an optical band gap of 3.24 eV. The NG fabricated with an AZO/PMMA/ZnO/stainless steel configuration exhibited a higher output voltage than the device with an AZO/ZnO/PMMA/stainless steel configuration. In addition, the annealing temperature affected the open-circuit voltage of the NGs;the output voltage reached 3.81 V when the annealing temperature was 150℃. The open-circuit voltage of the prepared self-powered accelerometer increased linearly with acceleration. In addition, the small NG-based accelerometer, which exhibited excellent fatigue resistance, can be used for acceleration measurements of small and lightweight devices.
基金supports from National Natural Science Foundation of China(No.62004166)Fundamental Research Funds for the Central Universities(No.31020190QD027)+2 种基金Natural Science Basic Research Program of Shaanxi(Program No.2020JQ-199)China National Postdoctoral Program for Innovative Talents(No.BX20200279)Key Research and Development Program of Shaanxi Province(2020GXLH-Z-027,2020ZDLGY04-08).
文摘Micro-Opto-Electro-Mechanical Systems(MOEMS)accelerometer is a new type of accelerometer which combines the merits of optical measurement and Micro-Electro-Mechanical Systems(MEMS)to enable high precision,small volume and anti-electromagnetic disturbance measurement of acceleration.In recent years,with the in-depth research and development of MOEMS accelerometers,the community is flourishing with the possible applications in seismic monitoring,inertial navigation,aerospace and other industrial and military fields.There have been a variety of schemes of MOEMS accelerometers,whereas the performances differ greatly due to different measurement principles and corresponding application requirements.This paper aims to address the pressing issue of the current lack of systematic review of MOEMS accelerometers.According to the optical measurement principle,we divide the MOEMS accelerometers into three categories:the geometric optics based,the wave optics based,and the new optomechanical accelerometers.Regarding the most widely studied category,the wave optics based accelerometers are further divided into four sub-categories,which is based on grating interferometric cavity,Fiber Bragg Grating(FBG),Fabry-Perot cavity,and photonic crystal,respectively.Following a brief introduction to the measurement principles,the typical performances,advantages and disadvantages as well as the potential application scenarios of all kinds of MOEMS accelerometers are discussed on the basis of typical demonstrations.This paper also presents the status and development tendency of MOEMS accelerometers to meet the ever-increasing demand for high-precision acceleration measurement.
文摘Tremor is a manifestation of a variety of human neurodegenerative diseases, notably Parkinson’s disease (PD) and Essential Tremor (ET), both affecting millions worldwide. PD is primarily caused by a progressive loss of dopamine neurons in the nigrostriatal system that leads to widespread motor symptoms such as bradykinesia, rigidity, tremor and postural instability. ET typically involves a tremor of the arms, hands or fingers. No definitive test or biomarker is yet available for PD or ET, so the rate of misdiagnosis is relatively high. As tremor is a very common feature at the onset of both diseases, it is crucial to be able to characterize it. This is made possible using acce?lerometers to quantify the tremor amplitude and frequency. In this work we aim to find tasks involving upper limb movements that are suitable to modulate both types of tremor. Four tasks were tested, differing on whether the arms moved together or alternatingly and whether loads were added. Significant differences in tremor measures were found when patients were asked to perform simultaneous rapid arms movements with loads placed on their wrists. These results may allow the design of an efficient fMRI protocol for identifying the cortical circuits responsible for the modulation of tremor.
文摘The rapid development of MEMS technology has made MEMS accelerometers mature and the application range has been expanded. Many kinds of MEMS accelerometers are researched. According to the working principle of MEMS accelerometer, it can be divided into: piezoresistive, piezoelectric, capacitive, tunnel, resonant, electromagnetic, thermocouple, optical, inductive, etc. Due to its outstanding features in terms of size, quality, power consumption and reliability, MEMS sensors are used in military applications and where high environmental resistance is required. MEMS accelerometers are developing rapidly and have good application prospects. In order to make MEMS accelerometers more widely understood, the advantages of MEMS accelerometers are expounded. The research status of MEMS accelerometers is introduced, and MEMS are analyzed. The application of accelerometers in real-world environments, and the development trend of MEMS accelerometers in the future. More scholars will invest in MEMS accelerometer research, pursuing high performance, low power consumption, high precision, multi-function, and interaction. Strong MEMS accelerometers will be ubiquitous in the future.
基金IIT Roorkee under the Faculty Initiation Grant No.100556
文摘With the recent development of digital Micro Electro Mechanical System (MEMS) sensors, the cost of monitoring and detecting seismic events in real time can be greatly reduced. Ability of MEMS accelerograph to record a seismic event depends upon the efficiency of triggering algorithm, apart from the sensor's sensitivity. There are several classic triggering algorithms developed to detect seismic events, ranging from basic amplitude threshold to more sophisticated pattern recognition. Algorithms based on STA/LTA are reported to be computationally efficient for real time monitoring. In this paper, we analyzed several STA/LTA algorithms to check their efficiency and suitability using data obtained from the Quake Catcher Network (network of MEMS accelerometer stations). We found that most of the STA/LTA algorithms are suitable for use with MEMS accelerometer data to accurately detect seismic events. However, the efficiency of any particular algorithm is found to be dependent on the parameter set used (i.e., window width of STA, LTA and threshold level).
基金Project(61174002)supported by the National Natural Science Foundation of ChinaProject(200897)supported by the Foundation of National Excellent Doctoral Dissertation of PR China+1 种基金Project(NCET-10-0900)supported by the Program for New Century ExcellentTalents in University,ChinaProject(131061)supported by the Fok Ying Tung Education Foundation,China
文摘Single-axis rotation technique is often used in the marine laser inertial navigation system so as to modulate the constant biases of non-axial gyroscopes and accelerometers to attain better navigation performance.However,two significant accelerometer nonlinear errors need to be attacked to improve the modulation effect.Firstly,the asymmetry scale factor inaccuracy enlarges the errors of frequent zero-cross oscillating specific force measured by non-axial accelerometers.Secondly,the traditional linear model of accelerometers can hardly measure the continued or intermittent acceleration accurately.These two nonlinear errors degrade the high-precision specific force measurement and the calibration of nonlinear coefficients because triaxial accelerometers is urgent for the marine navigation.Based on the digital signal sampling property,the square coefficients and cross-coupling coefficients of accelerometers are considered.Meanwhile,the asymmetry scale factors are considered in the I-F conversion unit.Thus,a nonlinear model of specific force measurement is established compared to the linear model.Based on the three-axis turntable,the triaxial gyroscopes are utilized to measure the specific force observation for triaxial accelerometers.Considering the nonlinear combination,the standard calibration parameters and asymmetry factors are separately estimated by a two-step iterative identification procedure.Besides,an efficient specific force calculation model is approximately derived to reduce the real-time computation cost.Simulation results illustrate the sufficient estimation accuracy of nonlinear coefficients.The experiments demonstrate that the nonlinear model shows much higher accuracy than the linear model in both the gravimetry and sway navigation validations.
文摘A program of adaptive quadrature demodulation is proposed to supply the gaps in the traditional analog detection technology of a silicon micro-machined gyroscope (SMG). This program is suitable for digital phase locked loop (DPLL) drive technology that proposed in other papers. In addition the program adopts an adaptive filtering algorithm, which selects the in-phase and quadrature components that are outputs of the DPLL of the SMG's drive mode as reference signals to update the amplitude of the in-phase and quadrature components of the input signal by iteratively. An objective of the program is to minimize the mean square error of the accurate amplitudes and the estimated amplitudes of SMG's detection mode. The simulation and test results prove the feasibility of the program that lays the foundation for the further improvement of the SMG's system performance and the implementation of the SMG system's self-calibration and self-demarcation in future.
文摘This article presents the modal frequency recordings of a rigid bridge, monitored by the GPS receivers (Global Positioning System) with a data recording rate of 100 Hz and accelerometers. The GPS data processing was performed through the double-difference phase, using the adjusted interferometry technique (i.e. phase residue method—PRM®). In the method, the double-difference phase of the carrier L1 is realized by using two satellites only, one was positioned at the zenith of the structure and the other satellite was positioned near the horizon. The results of the parametric adjustment of the PRM observations were finalized through software Interferometry, mathematical algorithm were applied and compared with the accelerometer. The comparison served to validate the use of GPS as a fast and reliable instrument for the preliminary monitoring of the dynamic behavior of the bridge, road artworks which are common in several countries, especially in the Brazilian road network. The data time series from the GPS and accelerometers were processed using the Wavelet. The detection of frequencies means that the combination of 100 Hz GPS receivers and the PRM allows detecting vibrations up to 5 mm. It presented significant results which were never obtained by the Fourier Transform.
基金supported by the National Natural Science Foundation of China under Grant No.50378086the China Seismology United Foundation under Grant No.104139.
文摘A new integrated measuring system with eight force-balance accelerometers is proposed to obtain a direct measurement of six degree-of freedom (DOF) ground motions, including three rotational and three actual translational acceleration components without gyroscopes. In the proposed measuring system, the relationship between the output from eight force-balance accelerometer and the six DOF motion of the measuring system under an earthquake are described by differential equations. These equations are derived from the positions and directions of the eight force-balance accelerometers in the measuring system. The third-order Runge-Kutta algorithm is used to guarantee the accuracy of the numerical calculation. All the algorithms used to compute the six DOF components of the ground motion are implemented in a real-time in Digital Signal Processor (DSP). The distortion of the measured results caused by position and direction errors of the accelerometers in the measuring system are reduced by multiplying a compensation coefficient C to the output and subtracting static zero drift from the measured results, respectively.
基金supported by the National Key R&D Program of China(2021YFC2501500)National Natural Science Foundation of China(82171476)。
文摘Purpose:The aim of the current study was to investigate the association of accelerometer-measured sleep duration and different intensities of physical activity(PA)with the risk of incident type 2 diabetes in a population-based prospective cohort study.Methods:Altogether,88,000 participants(mean age=62.2±7.9 years,mean±SD)were included from the UK Biobank.Sleep duration(short:<6 h/day;normal:6-8 h/day;long:>8 h/day)and PA of different intensities were measured using a wrist-won accelerometer over a 7-day period between 2013 and 2015.PA was classified according to the median or World Health Organization-recommendation:total volume of PA(high,low),moderate-to-vigorous PA(MVPA)(recommended,not recommended),and light-intensity PA(high,low).Incidence of type 2diabetes was ascertained using hospital records or death registries.Results:During a median follow-up of 7.0 years,1615 incident type 2 diabetes cases were documented.Compared with normal sleep duration,short(hazard ratio(HR)=1.21,95%confidence interval(95%CI):1.03-1.41)but not long sleep duration(HR=1.01,95%CI:0.89-1.15)was associated with excessive type 2 diabetes risk.This increased risk among short sleepers seems to be protected against by PA.Compared with normal sleepers with high or recommended PA,short sleepers with low volume of PA(HR=1.81,95%CI:1.46-2.25),not recommended(below the World Health Organization-recommended level of)MVPA(HR=1.92,95%CI:1.55-2.36),or low light-intensity PA(HR=1.49,95%CI:1.13-1.90)had a higher risk of type 2 diabetes,while short sleepers with a high volume of PA(HR=1.14,95%CI:0.88-1.49),recommended MVPA(HR=1.02,95%CI:0.71-1.48),or high light-intensity PA(HR=1.14,95%CI:0.92-1.41)did not.Conclusion:Accelerometer-measured short but not long sleep duration was associated with a higher risk of incident type 2 diabetes.A higher level of PA,regardless of intensity,potentially ameliorates this excessive risk.
基金This work has received funding from 5150 Spring Specialists(05492018012)the European Union Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No.701697,Major Program of the National Social Science Fund of China(Grant No.17ZDA092)+1 种基金Basic Research Programs(Natural Science Foundation)of Jiangsu Province(BK20180794)333 High-Level Talent Cultivation Project of Jiangsu Province(BRA2018332)and the PAPD fund.
文摘MEMS accelerometers are widely used in various fields due to their small size and low cost,and have good application prospects.However,the low accuracy limits its range of applications.To ensure data accuracy and safety we need to calibrate MEMS accelerometers.Many authors have improved accelerometer accuracy by calculating calibration parameters,and a large number of published calibration methods have been confusing.In this context,this paper introduces these techniques and methods,analyzes and summarizes the main error models and calibration procedures,and provides useful suggestions.Finally,the content of the accelerometer calibration method needs to be overcome.
文摘In the past,only one performance parameter was considered in the reliability estimation of micro-electro-mechanical system (MEMS) accelerometers,resulting in a one-sided reliability evaluation. Aiming at the failure condition of large range MEMS accelerometers in high temperature environment,the corresponding accelerated degradation test is designed. According to the degradation condition of zero bias and scale factor,multiple dependent reliability estimation of large range MEMS accelerometers is carried out. The results show that the multiple dependent reliability estimation of the large range MEMS accelerometers can improve the accuracy of the estimation and get more accurate results.
基金Human activity data for the experiments were sourced from the Ethics Council for Grassroots Biomedical Research at Phenikaa University.The data collection adhered to Decision No.476/QD-DHP-HÐÐÐthe Ethics Council for Grassroots Biomedical Research at Phenikaa University(No.023.07.01/DHP-HÐÐÐ,2023 Dec).
文摘Analyzing physical activities through wearable devices is a promising research area for improving health assessment.This research focuses on the development of an affordable and real-time Human Activity Recognition(HAR)system designed to operate on low-performance microcontrollers.The system utilizes data from a bodyworn accelerometer to recognize and classify human activities,providing a cost-effective,easy-to-use,and highly accurate solution.A key challenge addressed in this study is the execution of efficient motion recognition within a resource-constrained environment.The system employs a Random Forest(RF)classifier,which outperforms Gradient Boosting Decision Trees(GBDT),Support Vector Machines(SVM),and K-Nearest Neighbors(KNN)in terms of accuracy and computational efficiency.The proposed features Average absolute deviation(AAD),Standard deviation(STD),Interquartile range(IQR),Range,and Root mean square(RMS).The research has conducted numerous experiments and comparisons to establish optimal parameters for ensuring system effectiveness,including setting a sampling frequency of 50 Hz and selecting an 8-s window size with a 40%overlap between windows.Validation was conducted on both the WISDM public dataset and a self-collected dataset,focusing on five fundamental daily activities:Standing,Sitting,Jogging,Walking,and Walking the stairs.The results demonstrated high recognition accuracy,with the system achieving 96.7%on the WISDM dataset and 97.13%on the collected dataset.This research confirms the feasibility of deploying HAR systems on low-performance microcontrollers and highlights the system’s potential applications in patient support,rehabilitation,and elderly care.
基金Project supported by the National Natural Science Foundation of China (Grant No.62071118)the Primary Research & Development Plan of Jiangsu Province (Grant No.BE2021004-3)。
文摘The nitrogen-vacancy (NV) center quantum systems have emerged as versatile tools in the field of precision measurement because of their high sensitivity in spin state detection and miniaturization potential as solid-state platforms.In this paper,an acceleration sensing scheme based on NV spin–strain coupling is proposed,which can effectively eliminate the influence of the stray noise field introduced by traditional mechanical schemes.Through the finite element simulation,it is found that the measurement bandwidth of this ensemble NV spin system ranges from 3 kHz to hundreds of kHz with structure√optimization.The required power is at the sub-μW level,corresponding to a noise-limited sensitivity of 6.7×10^(-5) /√Hz.Compared with other types of accelerometers,this micro-sized diamond sensor proposed here has low power consumption,exquisite sensitivity,and integration potential.This research opens a fresh perspective to realize an accelerometer with appealing comprehensive performance applied in biomechanics and inertial measurement fields.
基金the National Natural Science Foundation of China(No.50775209)NCET~~
文摘A calculation and test method for the natural frequency of a high-g micro accelerometer with complex structures is presented. A universal formula for natural frequency, which can significantly simplify the structural design process, is deduced and confirmed by experiment. A simplified analytical model is established to describe the accelerometer's mechanical behavior and deduce the formula for the natural frequency. Finite element modeling is also conducted to evaluate the natural frequency of the micro-accelerometer and verify the formula. The results obtained from the analytical model and the finite element simulation show good agreement. Finally, a shock comparison method designed for acquiring the high frequency characteristics of the accelerometer is introduced to verify the formula by testing its actual natural frequency.
文摘Resonant accelerometer is designed,which includes two double-ended tuning forks,a proof mass,four-leverage system amplifying inertial force,and drive/sense combs.Each tuning fork is electrostatically actuated and sensed at resonance using comb electrodes.The device is fabricated using MEMS bulk-silicon technology,whose sensitive degree is 27 3Hz/g,and the resolution is 167 8μg.