The snap-through behaviors and nonlinear vibrations are investigated for a bistable composite laminated cantilever shell subjected to transversal foundation excitation based on experimental and theoretical approaches....The snap-through behaviors and nonlinear vibrations are investigated for a bistable composite laminated cantilever shell subjected to transversal foundation excitation based on experimental and theoretical approaches.An improved experimental specimen is designed in order to satisfy the cantilever support boundary condition,which is composed of an asymmetric region and a symmetric region.The symmetric region of the experimental specimen is entirely clamped,which is rigidly connected to an electromagnetic shaker,while the asymmetric region remains free of constraint.Different motion paths are realized for the bistable cantilever shell by changing the input signal levels of the electromagnetic shaker,and the displacement responses of the shell are collected by the laser displacement sensors.The numerical simulation is conducted based on the established theoretical model of the bistable composite laminated cantilever shell,and an off-axis three-dimensional dynamic snap-through domain is obtained.The numerical solutions are in good agreement with the experimental results.The nonlinear stiffness characteristics,dynamic snap-through domain,and chaos and bifurcation behaviors of the shell are quantitatively analyzed.Due to the asymmetry of the boundary condition and the shell,the upper stable-state of the shell exhibits an obvious soft spring stiffness characteristic,and the lower stable-state shows a linear stiffness characteristic of the shell.展开更多
High spatiotemporal resolution brain electrical signals are critical for basic neuroscience research and high-precision focus diagnostic localization,as the spatial scale of some pathologic signals is at the submillim...High spatiotemporal resolution brain electrical signals are critical for basic neuroscience research and high-precision focus diagnostic localization,as the spatial scale of some pathologic signals is at the submillimeter or micrometer level.This entails connecting hundreds or thousands of electrode wires on a limited surface.This study reported a class of flexible,ultrathin,highdensity electrocorticogram(ECoG)electrode arrays.The challenge of a large number of wiring arrangements was overcome by a laminated structure design and processing technology improvement.The flexible,ultrathin,high-density ECoG electrode array was conformably attached to the cortex for reliable,high spatial resolution electrophysiologic recordings.The minimum spacing between electrodes was 15μm,comparable to the diameter of a single neuron.Eight hundred electrodes were prepared with an electrode density of 4444 mm^(-2).In focal epilepsy surgery,the flexible,high-density,laminated ECoG electrode array with 36 electrodes was applied to collect epileptic spike waves inrabbits,improving the positioning accuracy of epilepsy lesions from the centimeter to the submillimeter level.The flexible,high-density,laminated ECoG electrode array has potential clinical applications in intractable epilepsy and other neurologic diseases requiring high-precision electroencephalogram acquisition.展开更多
A new,innovative vibration cast-rolling technology of “electromagnetic stirring+dendrite breaking+asynchronous rolling” was proposed with the adoption of sinusoidal vibration of crystallization roller to prepare Ti/...A new,innovative vibration cast-rolling technology of “electromagnetic stirring+dendrite breaking+asynchronous rolling” was proposed with the adoption of sinusoidal vibration of crystallization roller to prepare Ti/Al laminated composites,and the effect of sinusoidal vibration of crystallization roller on composite microstructure was investigated in detail.The results show that the metallurgical bonding of titanium and aluminum is realized by mesh interweaving and mosaic meshing,instead of transition bonding by forming metal compound layer.The meshing depth between titanium and aluminum layers (6.6μm) of cast-rolling materials with strong vibration of crystallization roller (amplitude 0.87 mm,vibration frequency 25 Hz) is doubled compared with that of traditional cast-rolling materials (3.1μm),and the composite interfacial strength(27.0 N/mm) is twice as high as that of traditional cast-rolling materials (14.9 N/mm).This is because with the action of high-speed superposition of strong tension along the rolling direction,strong pressure along the width direction and rolling force,the composite linearity evolves from "straight line" with traditional casting-rolling to "curved line",and the depth and number of cracks in the interface increases greatly compared with those with traditional cast-rolling,which leads to the deep expansion of the meshing area between interfacial layers and promotes the stable enhancement of composite quality.展开更多
The continental shale reservoirs of Jurassic Lianggaoshan Formation in Sichuan Basin contain thin lamina,which is characterized by strong plasticity and developed longitudinal shell limestone interlayer.To improve the...The continental shale reservoirs of Jurassic Lianggaoshan Formation in Sichuan Basin contain thin lamina,which is characterized by strong plasticity and developed longitudinal shell limestone interlayer.To improve the production efficiency of reservoirs by multi-cluster fracturing,it is necessary to consider the unbalanced propagation of hydraulic fractures and the penetration effect of fractures.This paper constructed a numerical model of multi-fracture propagation and penetration based on the finite element coupling cohesive zone method;considering the construction cluster spacing,pump rate,lamina strength and other parameters studied the influencing factors of multi-cluster fracture interaction propagation;combined with AE energy data and fracture mode reconstruction method,quantitatively characterized the comprehensive impact of the strength of thin interlayer rock interfaces on the initiation and propagation of fractures that penetrate layers,and accurately predicted the propagation pattern of hydraulic fractures through laminated shale oil reservoirs.Simulation results revealed that in the process of multi-cluster fracturing,the proportion of shear damage is low,and mainly occurs in bedding fractures activated by outer fractures.Reducing the cluster spacing enhances the fracture system's penetration ability,though it lowers the activation efficiency of lamina.The high plasticity of the limestone interlayer may impact the vertical propagation distance of the main fracture.Improving the interface strength is beneficial to the reconstruction of the fracture height,but the interface communication effect is limited.Reasonable selection of layers with moderate lamina strength for fracturing stimulation,increasing the pump rate during fracturing and setting the cluster spacing reasonably are beneficial to improve the effect of reservoir stimulation.展开更多
The dynamic model of a bistable laminated composite shell simply supported by four corners is further developed to investigate the resonance responses and chaotic behaviors.The existence of the 1:1 resonance relations...The dynamic model of a bistable laminated composite shell simply supported by four corners is further developed to investigate the resonance responses and chaotic behaviors.The existence of the 1:1 resonance relationship between two order vibration modes of the system is verified.The resonance response of this class of bistable structures in the dynamic snap-through mode is investigated,and the four-dimensional(4D)nonlinear modulation equations are derived based on the 1:1 internal resonance relationship by means of the multiple scales method.The Hopf bifurcation and instability interval of the amplitude frequency and force amplitude curves are analyzed.The discussion focuses on investigating the effects of key parameters,e.g.,excitation amplitude,damping coefficient,and detuning parameters,on the resonance responses.The numerical simulations show that the foundation excitation and the degree of coupling between the vibration modes exert a substantial effect on the chaotic dynamics of the system.Furthermore,the significant motions under particular excitation conditions are visualized by bifurcation diagrams,time histories,phase portraits,three-dimensional(3D)phase portraits,and Poincare maps.Finally,the vibration experiment is carried out to study the amplitude frequency responses and bifurcation characteristics for the bistable laminated composite shell,yielding results that are qualitatively consistent with the theoretical results.展开更多
Piezoelectric devices exhibit unique properties that vary with different vibration modes,closely influenced by their polarization direction.This paper presents an analysis on the free vibration of laminated piezoelect...Piezoelectric devices exhibit unique properties that vary with different vibration modes,closely influenced by their polarization direction.This paper presents an analysis on the free vibration of laminated piezoelectric beams with varying polarization directions,using a state-space-based differential quadrature method.First,based on the electro-elasticity theory,the state-space method is extended to anisotropic piezoelectric materials,establishing state-space equations for arbitrary polarized piezoelectric beams.A semi-analytical solution for the natural frequency is then obtained via the differential quadrature method.The study commences by examining the impact of a uniform polarization direction,and then proceeds to analyze six polarization schemes relevant to the current research and applications.Additionally,the effects of geometric dimensions and gradient index on the natural frequencies are explored.The numerical results demonstrate that varying the polarization direction can significantly influence the natural frequencies,offering distinct advantages for piezoelectric elements with different polarizations.This research provides both theoretical insights and numerical methods for the structural design of piezoelectric devices.展开更多
The chaotic dynamic snap-through and complex nonlinear vibrations are investigated in a rectangular asymmetric cross-ply bistable composite laminated cantilever shell,in cases of 1:2 inter-well internal resonance and ...The chaotic dynamic snap-through and complex nonlinear vibrations are investigated in a rectangular asymmetric cross-ply bistable composite laminated cantilever shell,in cases of 1:2 inter-well internal resonance and primary resonance.The transverse foundation excitation is applied to the fixed end of the structure,and the other end is in a free state.The first-order approximate multiple scales method is employed to perform the perturbation analysis on the dimensionless two-degree-of-freedom ordinary differential motion control equation.The four-dimensional averaged equations are derived in both polar and rectangular coordinate forms.Deriving from the obtained frequency-amplitude and force-amplitude response curves,a detailed analysis is conducted to examine the impacts of excitation amplitude,damping coefficient,and tuning parameter on the nonlinear internal resonance characteristics of the system.The nonlinear softening characteristic is exhibited in the upper stable-state,while the lower stable-state demonstrates the softening and linearity characteristics.Numerical simulation is carried out using the fourth-order Runge-Kutta method,and a series of nonlinear response curves are plotted.Increasing the excitation amplitude further elucidates the global bifurcation and chaotic dynamic snap-through characteristics of the bistable cantilever shell.展开更多
The bonding interface of 7B52 Al alloy laminated composite (ALC) fabricated by hot rolling was investigated using optical microscopy (OM), transmission electron microscopy (TEM), scanning electron microscopy (...The bonding interface of 7B52 Al alloy laminated composite (ALC) fabricated by hot rolling was investigated using optical microscopy (OM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), ultrasonic flaw detection (UFD), and bonding strength tests. The results show that metallurgical bonding is achieved at the interface after composite rolling. The TEM analysis and tensile tests indicate that the 7B52 ALC plate combines high strength of the hard individual layer and good toughness of the soft individual layer. However, UFD technology and SEM analysis prove that the defects (thick oxide films, acid washed residues, air, oil and coarse particles) existing in the bonding interface are harmful to the bonding strength. To sum up, the composite roiling process is suitable for 7B52 ALC plate, and the content and size of the defects should be controlled strictly. Advanced surface treatment of each individual layer would be beneficial to further improve the bonding quality.展开更多
The microstructural development and its effect on the mechanical properties of Al/Cu laminated composite produced by asymmetrical roll bonding and annealing were studied. The composite characterizations were conducted...The microstructural development and its effect on the mechanical properties of Al/Cu laminated composite produced by asymmetrical roll bonding and annealing were studied. The composite characterizations were conducted by transmission electron microscope(TEM), scanning electron microscope(SEM), peeling tests and tensile tests. It is found that the ultra-fine grained laminated composites with tight bonding interface are prepared by the roll bonding technique. The annealing prompts the atomic diffusion in the interface between dissimilar matrixes, and even causes the formation of intermetallic compounds. The interfacial bonding strength increases to the maximum value owing to the interfacial solution strengthening at 300 °C annealing, but sharply decreases by the damage effect of intermetallic compounds at elevated temperatures. The composites obtain high tensile strength due to the Al crystallization grains and Cu twins at 300 °C. At 350 °C annealing, however, the composites get high elongation by the interfacial interlayer with submicron thickness.展开更多
To meet the demands for large space and flexible compartmentation ofbuildings, laminated vierendeel trasses are adopted in high-position transfer story structures.First the bearing characteristics are analyzed, in whi...To meet the demands for large space and flexible compartmentation ofbuildings, laminated vierendeel trasses are adopted in high-position transfer story structures.First the bearing characteristics are analyzed, in which reasonable stiffness ratio of the upperchord, middle chord, and lower chord is derived. Then combined with an actual engineering model (1:8similar ratio), the static loading and pseudo-dynamic tests of two models for laminated vierendeeltrass used in transfer story structures are conducted, in which one model adopts reinforcedconcrete, and the other adopts prestressed concrete and shape steel concrete. Seismic behaviors areanalyzed, including inter-story displacement, base shear-displacement skeleton curves, andequivalent viscosity-damping curves. A program is programmed to carry out the elasto-plastic dynamicanalysis, and displacement time-history curves of the two models are derived. The test and analysisresults show that the laminated vierendeel trass with prestressed concrete and shape steel concretehas excellent seismic behaviors. It can solve the disadvantages of laminated vierendeel trussesused in transfer story structures. Finally, some design suggestions are put forward, which can bereferenced by similar engineering.展开更多
Surface notches lower the stiffness of laminated strips, so they lower the buckling loads of the laminated strips, too. In this paper a new method is proposed to predict the buckling loads of the laminated strips with...Surface notches lower the stiffness of laminated strips, so they lower the buckling loads of the laminated strips, too. In this paper a new method is proposed to predict the buckling loads of the laminated strips with a surface notch. The theoretical and experimental results show that the buckling loads decrease as the depth or width of the surface notches increase; when the stacking sequence of the laminated strips is [0°/0°/+ θ/-θ/0°/0°/+θ/-θ] s , the buckling load decrease as θ increases. It proves that the method is reliable and significant.展开更多
This paper deals with the progressive failure analysis of composite laminates. Triangular elements which include the transverse shear effects are us.d for the stress analysis. A new method for the calculation of the s...This paper deals with the progressive failure analysis of composite laminates. Triangular elements which include the transverse shear effects are us.d for the stress analysis. A new method for the calculation of the shear correction factors is presented. Several failure criteria are used to check the first ply failure and distinguish the laminate failure modes into fiber breakage or buckling, matrix cracking and delamination. After the failure is detected, the stiffness of the failed ply is modified according to the failure modes. The ultimate strength of the laminate is obtained by an iterative way. Several examples are given in the paper for stress analysis and progressive failure analysis of composite laminates.展开更多
When a body consists completely or even partly of viscoelastic materials, its response under static loading will be time-dependent. The adhesives used to glue together single plies in laminates usually exhibit a certa...When a body consists completely or even partly of viscoelastic materials, its response under static loading will be time-dependent. The adhesives used to glue together single plies in laminates usually exhibit a certain viscoelastic characteristic in a high temperature environment. In this paper, a laminated orthotropic rectangular plate with viscoelastic interfaces, described by the Kelvin-Voigt model, is considered. A power series expansion technique is adopted to approximate the time-variation of various field quantities. Results indicate that the response of the laminated plate with viscoelastic interfaces changes remarkably with time, and is much different from that of a plate with spring-like or viscous interfaces.展开更多
A last-ply failure (LPF) analysis method for laminated composite plates is incorpo- rated into the ?nite element code-ANSYS, and a robust optimum design method is presented. The composite structure is analyzed...A last-ply failure (LPF) analysis method for laminated composite plates is incorpo- rated into the ?nite element code-ANSYS, and a robust optimum design method is presented. The composite structure is analyzed by considering both in-plane and out-of-plane loads. For a lamina, two major failure modes are considered: matrix failure and ?ber breakage that are characterized by the proper strength criteria in the literature. When a lamina has failed, the laminate sti?ness is modi?ed to re?ect the damage, and stresses in the structure are re-analyzed. This procedure is repeatedly performed until the whole structure fails and thus the ultimate strength is determined. A structural optimization problem is solved with the ?ber orientation and the lamina thickness as the design variables and the LPF load as the objective. Finally, the robust optimum design method for laminates is presented and discussed.展开更多
Based on the model of multi-layer beam and the assumption of micro-inhomogeneity of material, the 3D fractural characteristics of laminated ceramic composites have been studied with numerical simulation. Under three-p...Based on the model of multi-layer beam and the assumption of micro-inhomogeneity of material, the 3D fractural characteristics of laminated ceramic composites have been studied with numerical simulation. Under three-point bending load, crack initiation, coalescence, propagation, tuning off in the weak interface and final rupture have been simulated. The spatial distribution and evolution process of acoustic emission are also presented in the paper. The simulation verifies the primary mechanism of the weak interface inducing the crack to expand along there and absorbing the fractural energy. The disciplinary significance of the effect of strength and properties of material on the toughness and strength of laminated ceramic composites is, therefore, discussed in this paper.展开更多
The impact buckling of a laminated composite bar is investigated in case of one of its ends moving due to axial impact compression. The governing equations considering the first- order shear deformation effect are der...The impact buckling of a laminated composite bar is investigated in case of one of its ends moving due to axial impact compression. The governing equations considering the first- order shear deformation effect are derived by the Hamilton principle and solved by the finite difference method. The critical axial shortness is determined by the B - R cirterion. The given example is used to highlight the influences of initial imperfection, impact velocity, stress wave and coupled stiffness. It is found that the unsymmetrically laminated bar has a quite different dynamic buckling behaviour from that of the symmetrically laminated bar.展开更多
The double Hopf bifurcation of a composite laminated piezoelectric plate with combined external and internal excitations is studied. Using a multiple scale method, the average equations are obtained in two coordinates...The double Hopf bifurcation of a composite laminated piezoelectric plate with combined external and internal excitations is studied. Using a multiple scale method, the average equations are obtained in two coordinates. The bifurcation response equations of the composite laminated piezoelectric plate with the primary parameter resonance, i.e., 1:3 internal resonance, are achieved. Then, the bifurcation feature of bifurcation equations is considered using the singularity theory. A bifurcation diagram is obtained on the parameter plane. Different steady state solutions of the average equations are analyzed. By numerical simulation, periodic vibration and quasi-periodic vibration responses of the Composite laminated piezoelectric plate are obtained.展开更多
As a preliminary step in the nonlinear design of shape memory alloy(SMA) composite structures,the force-displacement characteristics of the SMA layer are studied.The bilinear hysteretic model is adopted to describe ...As a preliminary step in the nonlinear design of shape memory alloy(SMA) composite structures,the force-displacement characteristics of the SMA layer are studied.The bilinear hysteretic model is adopted to describe the constitutive relationship of SMA material.Under the assumption that there is no point of SMA layer finishing martensitic phase transformation during the loading and unloading process,the generalized restoring force generated by SMA layer is deduced for the case that the simply supported beam vibrates in its first mode.The generalized force is expressed as piecewise-nonlinear hysteretic function of the beam transverse displacement.Furthermore the energy dissipated by SMA layer during one period is obtained by integration,then its dependencies are discussed on the vibration amplitude and the SMA's strain(Ms-Strain) value at the beginning of martensitic phase transformation.It is shown that SMA's energy dissipating capacity is proportional to the stiffness difference of bilinear model and nonlinearly dependent on Ms-Strain.The increasing rate of the dissipating capacity gradually reduces with the amplitude increasing.The condition corresponding to the maximum dissipating capacity is deduced for given value of the vibration amplitude.The obtained results are helpful for designing beams laminated with shape memory alloys.展开更多
The pressure reflected from a bi-laminated piezoelectric plate hasbeen determined using the Thomson-Haskell matrix method. The plate iscomposed of a piezoelectric layer with grounded vacuum and An elasticlayer in cont...The pressure reflected from a bi-laminated piezoelectric plate hasbeen determined using the Thomson-Haskell matrix method. The plate iscomposed of a piezoelectric layer with grounded vacuum and An elasticlayer in contact with the fluid. An incident plane wave in the fluidmedium strikes the plate at dif- Ferent angles. The required electricpotential across the piezoelectric layer to cancel the reflectionfrom the Fluid/elastic boundary has been determined for thepiezoelectric material PZT-5 at various thickness parame- Ters andincident frequencies.展开更多
The laminated glasses(LGs)composites are gaining popularity as protectivestructural material. Delamination strength(DS) of(LGs) with different inter-layers and their different nominal thicknesses were compared. The ef...The laminated glasses(LGs)composites are gaining popularity as protectivestructural material. Delamination strength(DS) of(LGs) with different inter-layers and their different nominal thicknesses were compared. The effect of inter-layer thickness, delamination load, and inter-layer type on DS is clearly observed from this brief study. It is concluded that inter-layer thickness has the significant role in determining the DS of LGs. The statistical analysis confirmed the strong association of DS with inter-layer thickness and the interlayer type. It was found that the LG-PVB composite has the comparatively lower DS than LG-EVA composite and inter-layer thickness has the prominent role in the determination of DS in the LG-EVAcomposite. There is an increment in DS with an increment in critical inter-layer thickness in both LG-EVA and LG-PVBcomposites. The increment in the inter-layer thickness from 0.38 mm to 0.76 mm increases DS significantly; whereas, the further increment in the inter-layer thickness to the higher value has a lesser effect. The finite element model was constituted(without considering the effect of temperature) for determining DS of LG composite. The simulation results were in a good match with experimental results. The results of the present work can be utilized by the design engineers while selecting LG for structural applications.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.11832002 and 12072201)。
文摘The snap-through behaviors and nonlinear vibrations are investigated for a bistable composite laminated cantilever shell subjected to transversal foundation excitation based on experimental and theoretical approaches.An improved experimental specimen is designed in order to satisfy the cantilever support boundary condition,which is composed of an asymmetric region and a symmetric region.The symmetric region of the experimental specimen is entirely clamped,which is rigidly connected to an electromagnetic shaker,while the asymmetric region remains free of constraint.Different motion paths are realized for the bistable cantilever shell by changing the input signal levels of the electromagnetic shaker,and the displacement responses of the shell are collected by the laser displacement sensors.The numerical simulation is conducted based on the established theoretical model of the bistable composite laminated cantilever shell,and an off-axis three-dimensional dynamic snap-through domain is obtained.The numerical solutions are in good agreement with the experimental results.The nonlinear stiffness characteristics,dynamic snap-through domain,and chaos and bifurcation behaviors of the shell are quantitatively analyzed.Due to the asymmetry of the boundary condition and the shell,the upper stable-state of the shell exhibits an obvious soft spring stiffness characteristic,and the lower stable-state shows a linear stiffness characteristic of the shell.
基金support of the National Natural Science Foundation of China(Nos.U20A6001,12002190,11972207,and 11921002)the Fundamental Research Funds for the Central Universities,China(No.SWUKQ22029)the Chongqing Natural Science Foundation of China(No.CSTB2022NSCQ-MSX1635).
文摘High spatiotemporal resolution brain electrical signals are critical for basic neuroscience research and high-precision focus diagnostic localization,as the spatial scale of some pathologic signals is at the submillimeter or micrometer level.This entails connecting hundreds or thousands of electrode wires on a limited surface.This study reported a class of flexible,ultrathin,highdensity electrocorticogram(ECoG)electrode arrays.The challenge of a large number of wiring arrangements was overcome by a laminated structure design and processing technology improvement.The flexible,ultrathin,high-density ECoG electrode array was conformably attached to the cortex for reliable,high spatial resolution electrophysiologic recordings.The minimum spacing between electrodes was 15μm,comparable to the diameter of a single neuron.Eight hundred electrodes were prepared with an electrode density of 4444 mm^(-2).In focal epilepsy surgery,the flexible,high-density,laminated ECoG electrode array with 36 electrodes was applied to collect epileptic spike waves inrabbits,improving the positioning accuracy of epilepsy lesions from the centimeter to the submillimeter level.The flexible,high-density,laminated ECoG electrode array has potential clinical applications in intractable epilepsy and other neurologic diseases requiring high-precision electroencephalogram acquisition.
基金Funded by the Hebei Province Natural Science Foundation (No.E2017203043)National Natural Science Foundation of China(No.U1604251)。
文摘A new,innovative vibration cast-rolling technology of “electromagnetic stirring+dendrite breaking+asynchronous rolling” was proposed with the adoption of sinusoidal vibration of crystallization roller to prepare Ti/Al laminated composites,and the effect of sinusoidal vibration of crystallization roller on composite microstructure was investigated in detail.The results show that the metallurgical bonding of titanium and aluminum is realized by mesh interweaving and mosaic meshing,instead of transition bonding by forming metal compound layer.The meshing depth between titanium and aluminum layers (6.6μm) of cast-rolling materials with strong vibration of crystallization roller (amplitude 0.87 mm,vibration frequency 25 Hz) is doubled compared with that of traditional cast-rolling materials (3.1μm),and the composite interfacial strength(27.0 N/mm) is twice as high as that of traditional cast-rolling materials (14.9 N/mm).This is because with the action of high-speed superposition of strong tension along the rolling direction,strong pressure along the width direction and rolling force,the composite linearity evolves from "straight line" with traditional casting-rolling to "curved line",and the depth and number of cracks in the interface increases greatly compared with those with traditional cast-rolling,which leads to the deep expansion of the meshing area between interfacial layers and promotes the stable enhancement of composite quality.
基金financial support by the National Key Research and Development Program of China (No.2022YFE0129800)the National Natural Science Foundation of China (No.52074311)。
文摘The continental shale reservoirs of Jurassic Lianggaoshan Formation in Sichuan Basin contain thin lamina,which is characterized by strong plasticity and developed longitudinal shell limestone interlayer.To improve the production efficiency of reservoirs by multi-cluster fracturing,it is necessary to consider the unbalanced propagation of hydraulic fractures and the penetration effect of fractures.This paper constructed a numerical model of multi-fracture propagation and penetration based on the finite element coupling cohesive zone method;considering the construction cluster spacing,pump rate,lamina strength and other parameters studied the influencing factors of multi-cluster fracture interaction propagation;combined with AE energy data and fracture mode reconstruction method,quantitatively characterized the comprehensive impact of the strength of thin interlayer rock interfaces on the initiation and propagation of fractures that penetrate layers,and accurately predicted the propagation pattern of hydraulic fractures through laminated shale oil reservoirs.Simulation results revealed that in the process of multi-cluster fracturing,the proportion of shear damage is low,and mainly occurs in bedding fractures activated by outer fractures.Reducing the cluster spacing enhances the fracture system's penetration ability,though it lowers the activation efficiency of lamina.The high plasticity of the limestone interlayer may impact the vertical propagation distance of the main fracture.Improving the interface strength is beneficial to the reconstruction of the fracture height,but the interface communication effect is limited.Reasonable selection of layers with moderate lamina strength for fracturing stimulation,increasing the pump rate during fracturing and setting the cluster spacing reasonably are beneficial to improve the effect of reservoir stimulation.
基金Project supported by the National Natural Science Foundation of China(Nos.12293000,12293001,11988102,12172006,and 12202011)。
文摘The dynamic model of a bistable laminated composite shell simply supported by four corners is further developed to investigate the resonance responses and chaotic behaviors.The existence of the 1:1 resonance relationship between two order vibration modes of the system is verified.The resonance response of this class of bistable structures in the dynamic snap-through mode is investigated,and the four-dimensional(4D)nonlinear modulation equations are derived based on the 1:1 internal resonance relationship by means of the multiple scales method.The Hopf bifurcation and instability interval of the amplitude frequency and force amplitude curves are analyzed.The discussion focuses on investigating the effects of key parameters,e.g.,excitation amplitude,damping coefficient,and detuning parameters,on the resonance responses.The numerical simulations show that the foundation excitation and the degree of coupling between the vibration modes exert a substantial effect on the chaotic dynamics of the system.Furthermore,the significant motions under particular excitation conditions are visualized by bifurcation diagrams,time histories,phase portraits,three-dimensional(3D)phase portraits,and Poincare maps.Finally,the vibration experiment is carried out to study the amplitude frequency responses and bifurcation characteristics for the bistable laminated composite shell,yielding results that are qualitatively consistent with the theoretical results.
基金Project supported by the National Natural Science Foundation of China(Nos.12272353 and 12002316)the Key Scientific and Technological Research Projects in Henan Province of China(No.232102211075)。
文摘Piezoelectric devices exhibit unique properties that vary with different vibration modes,closely influenced by their polarization direction.This paper presents an analysis on the free vibration of laminated piezoelectric beams with varying polarization directions,using a state-space-based differential quadrature method.First,based on the electro-elasticity theory,the state-space method is extended to anisotropic piezoelectric materials,establishing state-space equations for arbitrary polarized piezoelectric beams.A semi-analytical solution for the natural frequency is then obtained via the differential quadrature method.The study commences by examining the impact of a uniform polarization direction,and then proceeds to analyze six polarization schemes relevant to the current research and applications.Additionally,the effects of geometric dimensions and gradient index on the natural frequencies are explored.The numerical results demonstrate that varying the polarization direction can significantly influence the natural frequencies,offering distinct advantages for piezoelectric elements with different polarizations.This research provides both theoretical insights and numerical methods for the structural design of piezoelectric devices.
基金Project supported by the National Natural Science Foundation of China(Nos.11832002 and 12072201)。
文摘The chaotic dynamic snap-through and complex nonlinear vibrations are investigated in a rectangular asymmetric cross-ply bistable composite laminated cantilever shell,in cases of 1:2 inter-well internal resonance and primary resonance.The transverse foundation excitation is applied to the fixed end of the structure,and the other end is in a free state.The first-order approximate multiple scales method is employed to perform the perturbation analysis on the dimensionless two-degree-of-freedom ordinary differential motion control equation.The four-dimensional averaged equations are derived in both polar and rectangular coordinate forms.Deriving from the obtained frequency-amplitude and force-amplitude response curves,a detailed analysis is conducted to examine the impacts of excitation amplitude,damping coefficient,and tuning parameter on the nonlinear internal resonance characteristics of the system.The nonlinear softening characteristic is exhibited in the upper stable-state,while the lower stable-state demonstrates the softening and linearity characteristics.Numerical simulation is carried out using the fourth-order Runge-Kutta method,and a series of nonlinear response curves are plotted.Increasing the excitation amplitude further elucidates the global bifurcation and chaotic dynamic snap-through characteristics of the bistable cantilever shell.
基金Project(51312JQ08)supported by the Pre-Research Foundation of China General Equipment DepartmentProject(NBPJ2013-4)supported by the Postdoctoral Science Foundation of Ningbo Branch of China Academy of Ordnance Science+1 种基金Project(bsh1402073)supported by the Postdoctoral Science Foundation of Zhejiang Province,ChinaProject(2014A610051)supported by the Ningbo Natural Science Foundation of China
文摘The bonding interface of 7B52 Al alloy laminated composite (ALC) fabricated by hot rolling was investigated using optical microscopy (OM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), ultrasonic flaw detection (UFD), and bonding strength tests. The results show that metallurgical bonding is achieved at the interface after composite rolling. The TEM analysis and tensile tests indicate that the 7B52 ALC plate combines high strength of the hard individual layer and good toughness of the soft individual layer. However, UFD technology and SEM analysis prove that the defects (thick oxide films, acid washed residues, air, oil and coarse particles) existing in the bonding interface are harmful to the bonding strength. To sum up, the composite roiling process is suitable for 7B52 ALC plate, and the content and size of the defects should be controlled strictly. Advanced surface treatment of each individual layer would be beneficial to further improve the bonding quality.
基金Projects(50971038,51174058)supported by the National Natural Science Foundation of China
文摘The microstructural development and its effect on the mechanical properties of Al/Cu laminated composite produced by asymmetrical roll bonding and annealing were studied. The composite characterizations were conducted by transmission electron microscope(TEM), scanning electron microscope(SEM), peeling tests and tensile tests. It is found that the ultra-fine grained laminated composites with tight bonding interface are prepared by the roll bonding technique. The annealing prompts the atomic diffusion in the interface between dissimilar matrixes, and even causes the formation of intermetallic compounds. The interfacial bonding strength increases to the maximum value owing to the interfacial solution strengthening at 300 °C annealing, but sharply decreases by the damage effect of intermetallic compounds at elevated temperatures. The composites obtain high tensile strength due to the Al crystallization grains and Cu twins at 300 °C. At 350 °C annealing, however, the composites get high elongation by the interfacial interlayer with submicron thickness.
文摘To meet the demands for large space and flexible compartmentation ofbuildings, laminated vierendeel trasses are adopted in high-position transfer story structures.First the bearing characteristics are analyzed, in which reasonable stiffness ratio of the upperchord, middle chord, and lower chord is derived. Then combined with an actual engineering model (1:8similar ratio), the static loading and pseudo-dynamic tests of two models for laminated vierendeeltrass used in transfer story structures are conducted, in which one model adopts reinforcedconcrete, and the other adopts prestressed concrete and shape steel concrete. Seismic behaviors areanalyzed, including inter-story displacement, base shear-displacement skeleton curves, andequivalent viscosity-damping curves. A program is programmed to carry out the elasto-plastic dynamicanalysis, and displacement time-history curves of the two models are derived. The test and analysisresults show that the laminated vierendeel trass with prestressed concrete and shape steel concretehas excellent seismic behaviors. It can solve the disadvantages of laminated vierendeel trussesused in transfer story structures. Finally, some design suggestions are put forward, which can bereferenced by similar engineering.
文摘Surface notches lower the stiffness of laminated strips, so they lower the buckling loads of the laminated strips, too. In this paper a new method is proposed to predict the buckling loads of the laminated strips with a surface notch. The theoretical and experimental results show that the buckling loads decrease as the depth or width of the surface notches increase; when the stacking sequence of the laminated strips is [0°/0°/+ θ/-θ/0°/0°/+θ/-θ] s , the buckling load decrease as θ increases. It proves that the method is reliable and significant.
文摘This paper deals with the progressive failure analysis of composite laminates. Triangular elements which include the transverse shear effects are us.d for the stress analysis. A new method for the calculation of the shear correction factors is presented. Several failure criteria are used to check the first ply failure and distinguish the laminate failure modes into fiber breakage or buckling, matrix cracking and delamination. After the failure is detected, the stiffness of the failed ply is modified according to the failure modes. The ultimate strength of the laminate is obtained by an iterative way. Several examples are given in the paper for stress analysis and progressive failure analysis of composite laminates.
基金Project supported by the National Natural Science Foundation of China (No. 10432030) and NCET.
文摘When a body consists completely or even partly of viscoelastic materials, its response under static loading will be time-dependent. The adhesives used to glue together single plies in laminates usually exhibit a certain viscoelastic characteristic in a high temperature environment. In this paper, a laminated orthotropic rectangular plate with viscoelastic interfaces, described by the Kelvin-Voigt model, is considered. A power series expansion technique is adopted to approximate the time-variation of various field quantities. Results indicate that the response of the laminated plate with viscoelastic interfaces changes remarkably with time, and is much different from that of a plate with spring-like or viscous interfaces.
基金Project supported by the National Natural Science Foundation of China (No.10272049).
文摘A last-ply failure (LPF) analysis method for laminated composite plates is incorpo- rated into the ?nite element code-ANSYS, and a robust optimum design method is presented. The composite structure is analyzed by considering both in-plane and out-of-plane loads. For a lamina, two major failure modes are considered: matrix failure and ?ber breakage that are characterized by the proper strength criteria in the literature. When a lamina has failed, the laminate sti?ness is modi?ed to re?ect the damage, and stresses in the structure are re-analyzed. This procedure is repeatedly performed until the whole structure fails and thus the ultimate strength is determined. A structural optimization problem is solved with the ?ber orientation and the lamina thickness as the design variables and the LPF load as the objective. Finally, the robust optimum design method for laminates is presented and discussed.
基金S&T Project No.2006B14601004,Guangdong ProvinceS&T Project No.62047,Educational Bureau,Guanzhou City Fund of Natural Science,Guangdong Province(No.05001885)
文摘Based on the model of multi-layer beam and the assumption of micro-inhomogeneity of material, the 3D fractural characteristics of laminated ceramic composites have been studied with numerical simulation. Under three-point bending load, crack initiation, coalescence, propagation, tuning off in the weak interface and final rupture have been simulated. The spatial distribution and evolution process of acoustic emission are also presented in the paper. The simulation verifies the primary mechanism of the weak interface inducing the crack to expand along there and absorbing the fractural energy. The disciplinary significance of the effect of strength and properties of material on the toughness and strength of laminated ceramic composites is, therefore, discussed in this paper.
基金The present research work was financially supported by the National Natural Science Foundation of China.(No.19472042)
文摘The impact buckling of a laminated composite bar is investigated in case of one of its ends moving due to axial impact compression. The governing equations considering the first- order shear deformation effect are derived by the Hamilton principle and solved by the finite difference method. The critical axial shortness is determined by the B - R cirterion. The given example is used to highlight the influences of initial imperfection, impact velocity, stress wave and coupled stiffness. It is found that the unsymmetrically laminated bar has a quite different dynamic buckling behaviour from that of the symmetrically laminated bar.
基金Project supported by the National Natural Science Foundation of China(Nos.11402127,11290152 and 11072008)
文摘The double Hopf bifurcation of a composite laminated piezoelectric plate with combined external and internal excitations is studied. Using a multiple scale method, the average equations are obtained in two coordinates. The bifurcation response equations of the composite laminated piezoelectric plate with the primary parameter resonance, i.e., 1:3 internal resonance, are achieved. Then, the bifurcation feature of bifurcation equations is considered using the singularity theory. A bifurcation diagram is obtained on the parameter plane. Different steady state solutions of the average equations are analyzed. By numerical simulation, periodic vibration and quasi-periodic vibration responses of the Composite laminated piezoelectric plate are obtained.
基金supported by the National Natural Science Foundation of China (10872142 and 10632040)New Century Excellent Talents in University of China (NCET-05-0247)the Key Program of the Natural Science Foundation of Tianjin (09JCZDJ26800)
文摘As a preliminary step in the nonlinear design of shape memory alloy(SMA) composite structures,the force-displacement characteristics of the SMA layer are studied.The bilinear hysteretic model is adopted to describe the constitutive relationship of SMA material.Under the assumption that there is no point of SMA layer finishing martensitic phase transformation during the loading and unloading process,the generalized restoring force generated by SMA layer is deduced for the case that the simply supported beam vibrates in its first mode.The generalized force is expressed as piecewise-nonlinear hysteretic function of the beam transverse displacement.Furthermore the energy dissipated by SMA layer during one period is obtained by integration,then its dependencies are discussed on the vibration amplitude and the SMA's strain(Ms-Strain) value at the beginning of martensitic phase transformation.It is shown that SMA's energy dissipating capacity is proportional to the stiffness difference of bilinear model and nonlinearly dependent on Ms-Strain.The increasing rate of the dissipating capacity gradually reduces with the amplitude increasing.The condition corresponding to the maximum dissipating capacity is deduced for given value of the vibration amplitude.The obtained results are helpful for designing beams laminated with shape memory alloys.
基金the National Natural Science Foundation of China(No.10172039)
文摘The pressure reflected from a bi-laminated piezoelectric plate hasbeen determined using the Thomson-Haskell matrix method. The plate iscomposed of a piezoelectric layer with grounded vacuum and An elasticlayer in contact with the fluid. An incident plane wave in the fluidmedium strikes the plate at dif- Ferent angles. The required electricpotential across the piezoelectric layer to cancel the reflectionfrom the Fluid/elastic boundary has been determined for thepiezoelectric material PZT-5 at various thickness parame- Ters andincident frequencies.
基金supported by Technical Education Quality Improvement Programme (TEQIP-II) of Motilal Nehru National Institute of Technology Allahabad,Allahabad (U.P.),India financiallyby Invertis University,Bareilly,(U.P.),India
文摘The laminated glasses(LGs)composites are gaining popularity as protectivestructural material. Delamination strength(DS) of(LGs) with different inter-layers and their different nominal thicknesses were compared. The effect of inter-layer thickness, delamination load, and inter-layer type on DS is clearly observed from this brief study. It is concluded that inter-layer thickness has the significant role in determining the DS of LGs. The statistical analysis confirmed the strong association of DS with inter-layer thickness and the interlayer type. It was found that the LG-PVB composite has the comparatively lower DS than LG-EVA composite and inter-layer thickness has the prominent role in the determination of DS in the LG-EVAcomposite. There is an increment in DS with an increment in critical inter-layer thickness in both LG-EVA and LG-PVBcomposites. The increment in the inter-layer thickness from 0.38 mm to 0.76 mm increases DS significantly; whereas, the further increment in the inter-layer thickness to the higher value has a lesser effect. The finite element model was constituted(without considering the effect of temperature) for determining DS of LG composite. The simulation results were in a good match with experimental results. The results of the present work can be utilized by the design engineers while selecting LG for structural applications.