BACKGROUND Prophylactic loop ileostomy is an effective way to reduce the clinical severity of anastomotic leakage following radical resection of rectal cancer.Incisional surgical site infection(SSI)is a common complic...BACKGROUND Prophylactic loop ileostomy is an effective way to reduce the clinical severity of anastomotic leakage following radical resection of rectal cancer.Incisional surgical site infection(SSI)is a common complication after ileostomy closure.AIM To evaluate the efficacy and safety of the micro-power negative pressure wound technique(MPNPWT)in preventing incisional SSI.METHODS This was a prospective,randomized controlled clinical trial conducted at a single center.A total of 101 consecutive patients who underwent ileostomy closure after rectal cancer surgery with a prophylactic ileostomy were enrolled from January 2019 to December 2021.Patients were randomly allocated into an MPNPWT group and a control group.The MPNPWT group underwent intermittent suturing of the surgical incision with 2-0 Prolene and was covered with a micro-power negative pressure dressing.The surgical outcomes were compared between the MPNPWT(n=50)and control(n=51)groups.Risk factors for incisional SSI were identified using logistic regression.RESULTS There were no differences in baseline characteristics between the MPNPWT(n=50)and control groups(n=51).The incisional SSI rate was significantly higher in the control group than in the MPNPWT group(15.7%vs 2.0%,P=0.031).However,MPNPWT did not affect other surgical outcomes,including intra-abdominal complications,operative time,and blood loss.Postoperative hospital stay length and hospitalization costs did not differ significantly between the two groups(P=0.069 and 0.843,respectively).None of the patients experienced adverse effects of MPNPWT,including skin allergy,dermatitis,and pain.MPNPWT also helped heal the infected incision.Our study indicated that MPNPWT was an independent protective factor[odds ratio(OR)=0.005,P=0.025)]and diabetes was a risk factor(OR=26.575,P=0.029)for incisional SSI.CONCLUSION MPNPWT is an effective and safe way to prevent incisional SSI after loop ileostomy closure.展开更多
Tags of micro-power active RFID system are usually supllied by cells battery, the power consumption is a crucial factor. The currently applied operating mode is of timing wake-up. In this paper, presented the method o...Tags of micro-power active RFID system are usually supllied by cells battery, the power consumption is a crucial factor. The currently applied operating mode is of timing wake-up. In this paper, presented the method of LF wake-up technology , discussed how to use it to solve the low-power problem of active RFID tag. Put forward the crucial electrocircuit and working program flow. Practices show that this solution is capable of solving the problem of low-power of active RFID.展开更多
This paper presents a dual micro-power 150mA ultra LDO CMOS regulator,which is designed for high performance and small size portable wireless devices.The proposed LDO has been designed and simulated in 0.5μm 2P3M CMO...This paper presents a dual micro-power 150mA ultra LDO CMOS regulator,which is designed for high performance and small size portable wireless devices.The proposed LDO has been designed and simulated in 0.5μm 2P3M CMOS Process.It can guarantee 150mA output current per circuit and the leakage voltage is 60mV,1nA quiescent current when both are in shutdown mode,and it has 115μA ground current,output noise is 42μVrms,130μs fast turn-on circuitry and the junction temperature range is-40℃to 125℃.展开更多
To achieve a constant current limit,low power consumption and high driving capability,a micro-power LDO with a piecewise voltage-foldback current-limit circuit is presented.The current-limit threshold is dynamically a...To achieve a constant current limit,low power consumption and high driving capability,a micro-power LDO with a piecewise voltage-foldback current-limit circuit is presented.The current-limit threshold is dynamically adjusted to achieve a maximum driving capability and lower quiescent current of only 300 nA.To increase the loop stability of the proposed LDO,a high impedance transconductance buffer under a micro quiescent current is designed for splitting the pole that exists at the gate of the pass transistor to the dominant pole,and a zero is designed for the purpose of the second pole phase compensation.The proposed LDO is fabricated in a BiCMOS process. The measurement results show that the short-circuit current of the LDO is 190 mA,the constant limit current under a high drop-out voltage is 440 mA,and the maximum load current under a low drop-out voltage is up to 800 mA. In addition,the quiescent current of the LDO is only 7μA,the load regulation is about 0.56%on full scale,the line regulation is about 0.012%/V,the PSRR at 120 Hz is 58 dB and the drop-out voltage is only 70 mV when the load current is 250 mA.展开更多
文章以风-光-柴-储系统为研究对象,为了研究新能源出力不确定性对该系统的影响,提出了一种新能源出力复合预测模型。为提高风-光-柴-储系统运行的经济性、环保性和安全性,提出了考虑新能源出力不确定性的风-光-柴-储系统调度模型,并采...文章以风-光-柴-储系统为研究对象,为了研究新能源出力不确定性对该系统的影响,提出了一种新能源出力复合预测模型。为提高风-光-柴-储系统运行的经济性、环保性和安全性,提出了考虑新能源出力不确定性的风-光-柴-储系统调度模型,并采用了带有Monte Carlo模拟的遗传算法对模型进行求解。文章采用了负荷缺失率(load loss rate,LLR)和置信概率对系统的安全性进行评价,并分析了其对系统调度结果的影响。仿真结果表明,文中所提出的考虑新能源出力不确定性的风-光-柴-储系统调度模型,可以降低新能源出力不确定性对系统的影响,且该方法可以有效地平衡系统的经济性和安全性。展开更多
随着新型电力系统建设持续推进,直流微电网将成为配电网的重要组成部分。直流微电网接入交流负载时,振荡型功率会进入直流系统,影响分布式储能系统功率分配。为此,给出了储能系统功率分配综合原则,并以此提出一种无互联通信网络的功率...随着新型电力系统建设持续推进,直流微电网将成为配电网的重要组成部分。直流微电网接入交流负载时,振荡型功率会进入直流系统,影响分布式储能系统功率分配。为此,给出了储能系统功率分配综合原则,并以此提出一种无互联通信网络的功率分配方法。该方法以荷电状态作为“信息载体”,各储能单元仅需本地荷电状态(state of charge,SOC)信息即可完成自适应调整,在实现SOC均衡控制的同时,还能够让振荡型功率合理分配。此外,从等效输出阻抗的角度出发,对不同控制算法的分配效果展开了详细的分析讨论,表明了所提控制算法可以满足综合原则的要求。最后,通过实验验证了所提分布式储能控制策略的有效性。展开更多
随着信息技术的发展,市场对于更小型化、更高效光器件的需求不断增加.采用互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)工艺,成功制备了Si_(3)N_(4)光功率分束器并对其进行测试.结果表明,在1550 nm波长下,边缘...随着信息技术的发展,市场对于更小型化、更高效光器件的需求不断增加.采用互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)工艺,成功制备了Si_(3)N_(4)光功率分束器并对其进行测试.结果表明,在1550 nm波长下,边缘优化的1×8功率分束器的总损耗仅为1.30 dB,且其体积相较于传统设计可减小30%.本研究应用逆向优化算法,突破了传统设计仅能针对规则图形设计的限制,为实现小尺寸、低损耗的光功率分束器提供了一种可行途径.展开更多
基金Supported by the Zhejiang Provincial Natural Science Foundation of China,No.LQ20H260002.
文摘BACKGROUND Prophylactic loop ileostomy is an effective way to reduce the clinical severity of anastomotic leakage following radical resection of rectal cancer.Incisional surgical site infection(SSI)is a common complication after ileostomy closure.AIM To evaluate the efficacy and safety of the micro-power negative pressure wound technique(MPNPWT)in preventing incisional SSI.METHODS This was a prospective,randomized controlled clinical trial conducted at a single center.A total of 101 consecutive patients who underwent ileostomy closure after rectal cancer surgery with a prophylactic ileostomy were enrolled from January 2019 to December 2021.Patients were randomly allocated into an MPNPWT group and a control group.The MPNPWT group underwent intermittent suturing of the surgical incision with 2-0 Prolene and was covered with a micro-power negative pressure dressing.The surgical outcomes were compared between the MPNPWT(n=50)and control(n=51)groups.Risk factors for incisional SSI were identified using logistic regression.RESULTS There were no differences in baseline characteristics between the MPNPWT(n=50)and control groups(n=51).The incisional SSI rate was significantly higher in the control group than in the MPNPWT group(15.7%vs 2.0%,P=0.031).However,MPNPWT did not affect other surgical outcomes,including intra-abdominal complications,operative time,and blood loss.Postoperative hospital stay length and hospitalization costs did not differ significantly between the two groups(P=0.069 and 0.843,respectively).None of the patients experienced adverse effects of MPNPWT,including skin allergy,dermatitis,and pain.MPNPWT also helped heal the infected incision.Our study indicated that MPNPWT was an independent protective factor[odds ratio(OR)=0.005,P=0.025)]and diabetes was a risk factor(OR=26.575,P=0.029)for incisional SSI.CONCLUSION MPNPWT is an effective and safe way to prevent incisional SSI after loop ileostomy closure.
文摘Tags of micro-power active RFID system are usually supllied by cells battery, the power consumption is a crucial factor. The currently applied operating mode is of timing wake-up. In this paper, presented the method of LF wake-up technology , discussed how to use it to solve the low-power problem of active RFID tag. Put forward the crucial electrocircuit and working program flow. Practices show that this solution is capable of solving the problem of low-power of active RFID.
基金This work was supported by Supported by the 2016 Annual Young Academic Leaders Scientific Research Foundation of Chengdu University of Information Technology(No.J201604)and the National Social Science Foundation(No.61504014).
文摘This paper presents a dual micro-power 150mA ultra LDO CMOS regulator,which is designed for high performance and small size portable wireless devices.The proposed LDO has been designed and simulated in 0.5μm 2P3M CMOS Process.It can guarantee 150mA output current per circuit and the leakage voltage is 60mV,1nA quiescent current when both are in shutdown mode,and it has 115μA ground current,output noise is 42μVrms,130μs fast turn-on circuitry and the junction temperature range is-40℃to 125℃.
基金supported by the Ministerial "12th Five-Year" Pre-Research Fund of China(No.413080203)
文摘To achieve a constant current limit,low power consumption and high driving capability,a micro-power LDO with a piecewise voltage-foldback current-limit circuit is presented.The current-limit threshold is dynamically adjusted to achieve a maximum driving capability and lower quiescent current of only 300 nA.To increase the loop stability of the proposed LDO,a high impedance transconductance buffer under a micro quiescent current is designed for splitting the pole that exists at the gate of the pass transistor to the dominant pole,and a zero is designed for the purpose of the second pole phase compensation.The proposed LDO is fabricated in a BiCMOS process. The measurement results show that the short-circuit current of the LDO is 190 mA,the constant limit current under a high drop-out voltage is 440 mA,and the maximum load current under a low drop-out voltage is up to 800 mA. In addition,the quiescent current of the LDO is only 7μA,the load regulation is about 0.56%on full scale,the line regulation is about 0.012%/V,the PSRR at 120 Hz is 58 dB and the drop-out voltage is only 70 mV when the load current is 250 mA.
文摘文章以风-光-柴-储系统为研究对象,为了研究新能源出力不确定性对该系统的影响,提出了一种新能源出力复合预测模型。为提高风-光-柴-储系统运行的经济性、环保性和安全性,提出了考虑新能源出力不确定性的风-光-柴-储系统调度模型,并采用了带有Monte Carlo模拟的遗传算法对模型进行求解。文章采用了负荷缺失率(load loss rate,LLR)和置信概率对系统的安全性进行评价,并分析了其对系统调度结果的影响。仿真结果表明,文中所提出的考虑新能源出力不确定性的风-光-柴-储系统调度模型,可以降低新能源出力不确定性对系统的影响,且该方法可以有效地平衡系统的经济性和安全性。
文摘随着新型电力系统建设持续推进,直流微电网将成为配电网的重要组成部分。直流微电网接入交流负载时,振荡型功率会进入直流系统,影响分布式储能系统功率分配。为此,给出了储能系统功率分配综合原则,并以此提出一种无互联通信网络的功率分配方法。该方法以荷电状态作为“信息载体”,各储能单元仅需本地荷电状态(state of charge,SOC)信息即可完成自适应调整,在实现SOC均衡控制的同时,还能够让振荡型功率合理分配。此外,从等效输出阻抗的角度出发,对不同控制算法的分配效果展开了详细的分析讨论,表明了所提控制算法可以满足综合原则的要求。最后,通过实验验证了所提分布式储能控制策略的有效性。