An error correction technique for the micro-scanning instrument of the optical micro-scanning thermal microscope imaging system is proposed. The technique is based on micro-scanning technology combined with the propos...An error correction technique for the micro-scanning instrument of the optical micro-scanning thermal microscope imaging system is proposed. The technique is based on micro-scanning technology combined with the proposed second-order oversampling reconstruction algorithm and local gradient image reconstruction algorithm. In this paper, we describe the local gradient image reconstruction model, the error correction technique, down-sampling model and the error correction principle. In this paper, we use a Lena original image and four low-resolution images obtained from the standard half-pixel displacement to simulate and verify the effectiveness of the proposed technique. In order to verify the effectiveness of the proposed technique, two groups of low-resolution thermal microscope images are collected by the actual thermal microscope imaging system for experimental study. Simulations and experiments show that the proposed technique can reduce the optical micro-scanning errors, improve the imaging effect of the system and improve the system's spatial resolution. It can be applied to other electro-optical imaging systems to improve their resolution.展开更多
A method of micro-scanning location adaptive calibration was proposed, which was real- ized by the digital image micro-displacement estimation. With geometric calculation, this calibration method used the displacement...A method of micro-scanning location adaptive calibration was proposed, which was real- ized by the digital image micro-displacement estimation. With geometric calculation, this calibration method used the displacement estimation of two thermal microscope images to get the size and direc- tion of each scanning location calibration angle. And each location calibration process was repeated according to the offset given by the system beforehand. The comparison experiments of sequence oversampling reconstruction before and after the micro-scanning location calibration were done. The results showed that the calibration method effectively improved the thermal microscope imaging qual- ity.展开更多
Micro-computed tomography (MCT) encompasses two primary scanning options: ex-vivo and in-vivo imaging. Ex-vivo scanning involves the examination of extracted teeth or dental specimens, allowing for detailed analyses o...Micro-computed tomography (MCT) encompasses two primary scanning options: ex-vivo and in-vivo imaging. Ex-vivo scanning involves the examination of extracted teeth or dental specimens, allowing for detailed analyses of the microarchitecture of mineralized tissue. By analyzing the microarchitecture of dental tissues, MCT can provide valuable information about bone density, porosity, and microstructural changes, contributing to a better understanding of disease progression and treatment outcomes. Moreover, MCT facilitates the quantification of dental parameters, such as bone volume, trabecular thickness, and connectivity density, which are crucial for evaluating the efficacy of dental interventions. This present study aims to comprehensively review and explore the applications of MCT in dentistry and highlight its potential in advancing research and clinical practice. The results depicted that the quantitative approach of MCT enhances the precision and reliability of dental research. Researchers and clinicians can make evidence-based decisions regarding treatment strategies and patient management, relying on quantifiable data provided by MCT. The applications of MCT in dentistry extend beyond research, with potential clinical implications in fields such as dental implantology and endodontics. MCT is expected to play an increasingly significant role in enhancing our understanding of dental pathologies, improving treatment outcomes, and ultimately, benefiting patient care in the field of dentistry.展开更多
目的探究3D打印多孔结构陶瓷材料外科植入物孔隙结构的宏微观特征分析及评价方法。方法基于微米X射线CT(Micro-CT)扫描获取的多孔样品图像数据,利用VG Studio MAX 3.0软件及Mimics 16.0软件的多孔结构分析功能,对多孔结构的宏观结构特...目的探究3D打印多孔结构陶瓷材料外科植入物孔隙结构的宏微观特征分析及评价方法。方法基于微米X射线CT(Micro-CT)扫描获取的多孔样品图像数据,利用VG Studio MAX 3.0软件及Mimics 16.0软件的多孔结构分析功能,对多孔结构的宏观结构特征包括总孔隙率、宏孔孔径、内连接、开/闭孔率等进行测量和分析;同时,采用扫描电子显微镜对样品表面微观多孔形貌进行特征分析和评价。结果基于Micro-CT和SEM扫描及影像学分析实现了针对3D打印多孔结构陶瓷样件的孔隙结构的宏微观特征表征和统计分析,并验证了其可行性和准确性,形成了一套面向3D打印多孔结构陶瓷材料外科植入物形貌宏微结构尺寸特征的有效的测量和评价方法。结论本文提出的基于Micro-CT和SEM扫描成像进行3D打印多孔结构陶瓷样件的孔隙结构的宏微观特征表征和分析的统计方法,有利于实现多孔结构宏微观特征的相关测试内容和试验过程的规范统一,确保测试过程方法有据可依,结果评价准确有效,有利于提升产品的加工精度,便于不同企业同种工艺制造的多孔结构特征参数之间等同比较,为医疗器械行业多孔结构宏微观特征的数据积累奠定基础,有利于提高与人体生命安全息息相关的外科植入物产品的研发和制造水平。展开更多
基金Supported by Postgraduate Innovation Funding Project of Hebei Province(CXZZSS2019050)the Qinhuangdao City Key Research and Development Program Science and Technology Support Project(201801B010)
文摘An error correction technique for the micro-scanning instrument of the optical micro-scanning thermal microscope imaging system is proposed. The technique is based on micro-scanning technology combined with the proposed second-order oversampling reconstruction algorithm and local gradient image reconstruction algorithm. In this paper, we describe the local gradient image reconstruction model, the error correction technique, down-sampling model and the error correction principle. In this paper, we use a Lena original image and four low-resolution images obtained from the standard half-pixel displacement to simulate and verify the effectiveness of the proposed technique. In order to verify the effectiveness of the proposed technique, two groups of low-resolution thermal microscope images are collected by the actual thermal microscope imaging system for experimental study. Simulations and experiments show that the proposed technique can reduce the optical micro-scanning errors, improve the imaging effect of the system and improve the system's spatial resolution. It can be applied to other electro-optical imaging systems to improve their resolution.
基金Supported by Beijing Natural Science Foundation(4062029)Ministry of Science and Technology Innovation Foundation for Small and Medium-sized Enterprises (06KW1051)North China University of Technology Dr. Start-up Fund for 2013
文摘A method of micro-scanning location adaptive calibration was proposed, which was real- ized by the digital image micro-displacement estimation. With geometric calculation, this calibration method used the displacement estimation of two thermal microscope images to get the size and direc- tion of each scanning location calibration angle. And each location calibration process was repeated according to the offset given by the system beforehand. The comparison experiments of sequence oversampling reconstruction before and after the micro-scanning location calibration were done. The results showed that the calibration method effectively improved the thermal microscope imaging qual- ity.
文摘Micro-computed tomography (MCT) encompasses two primary scanning options: ex-vivo and in-vivo imaging. Ex-vivo scanning involves the examination of extracted teeth or dental specimens, allowing for detailed analyses of the microarchitecture of mineralized tissue. By analyzing the microarchitecture of dental tissues, MCT can provide valuable information about bone density, porosity, and microstructural changes, contributing to a better understanding of disease progression and treatment outcomes. Moreover, MCT facilitates the quantification of dental parameters, such as bone volume, trabecular thickness, and connectivity density, which are crucial for evaluating the efficacy of dental interventions. This present study aims to comprehensively review and explore the applications of MCT in dentistry and highlight its potential in advancing research and clinical practice. The results depicted that the quantitative approach of MCT enhances the precision and reliability of dental research. Researchers and clinicians can make evidence-based decisions regarding treatment strategies and patient management, relying on quantifiable data provided by MCT. The applications of MCT in dentistry extend beyond research, with potential clinical implications in fields such as dental implantology and endodontics. MCT is expected to play an increasingly significant role in enhancing our understanding of dental pathologies, improving treatment outcomes, and ultimately, benefiting patient care in the field of dentistry.
文摘目的探究3D打印多孔结构陶瓷材料外科植入物孔隙结构的宏微观特征分析及评价方法。方法基于微米X射线CT(Micro-CT)扫描获取的多孔样品图像数据,利用VG Studio MAX 3.0软件及Mimics 16.0软件的多孔结构分析功能,对多孔结构的宏观结构特征包括总孔隙率、宏孔孔径、内连接、开/闭孔率等进行测量和分析;同时,采用扫描电子显微镜对样品表面微观多孔形貌进行特征分析和评价。结果基于Micro-CT和SEM扫描及影像学分析实现了针对3D打印多孔结构陶瓷样件的孔隙结构的宏微观特征表征和统计分析,并验证了其可行性和准确性,形成了一套面向3D打印多孔结构陶瓷材料外科植入物形貌宏微结构尺寸特征的有效的测量和评价方法。结论本文提出的基于Micro-CT和SEM扫描成像进行3D打印多孔结构陶瓷样件的孔隙结构的宏微观特征表征和分析的统计方法,有利于实现多孔结构宏微观特征的相关测试内容和试验过程的规范统一,确保测试过程方法有据可依,结果评价准确有效,有利于提升产品的加工精度,便于不同企业同种工艺制造的多孔结构特征参数之间等同比较,为医疗器械行业多孔结构宏微观特征的数据积累奠定基础,有利于提高与人体生命安全息息相关的外科植入物产品的研发和制造水平。