期刊文献+
共找到81篇文章
< 1 2 5 >
每页显示 20 50 100
Seasonal Development of Microbial Activity in Soils of Northern Norway 被引量:15
1
作者 M. BLTER N. SOETHE +1 位作者 R. HORN C. UHLIG 《Pedosphere》 SCIE CAS CSCD 2005年第6期716-727,共12页
Seasonal development of soil microbial activity and bacterial biomass in sub-polar regions was investigated to determine the impacts of biotic and abiotic factors, such as organic matter content, temperature and moist... Seasonal development of soil microbial activity and bacterial biomass in sub-polar regions was investigated to determine the impacts of biotic and abiotic factors, such as organic matter content, temperature and moisture. The study was performed during spring thaw from three cultivated meadows and two non-cultivated forest sites near Alta, in northern Norway. Samples from all five sites showed increasing respiration rates directly after the spring thaw with soil respiration activity best related to soil organic matter content. However, distributions of bacterial biomass showed fewer similarities to these two parameters. This could be explained by variations of litter exploitation through the biomass. Microbial activity started immediately after the thaw while root growth had a longer time lag. An influence of root development on soil microbes was proposed for sites where microorganisms and roots had a tight relationship caused by a more intensive root structure. Also a reduction of microbial activity due to soil compaction in the samples from a wheel track could not be observed under laboratory conditions. New methodological approaches of differential staining for live and dead organisms were applied in order to follow changes within the microbial community. Under laboratory conditions freeze and thaw cycles showed a damaging influence on parts of the soil bacteria. Additionally, different patterns for active vs. non-active bacteria were noticeable after freeze-thaw cycles. 展开更多
关键词 bacterial biomass FREEZING microbial activity soil compaction thawing
下载PDF
Microbial activity and community diversity in a variable charge soil as affected by cadmium exposure levels and time 被引量:4
2
作者 Jia-li SHENTU Zhen-li HE +1 位作者 Xiao-e YANG Ting-qiang LI 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2008年第3期250-260,共11页
Effects of cadmium (Cd) on microbial biomass, variable charge soil (Typic Aquult) using an incubation study activity and community diversity were assessed in a representative Cadmium was added as CdCNO3)2 to reac... Effects of cadmium (Cd) on microbial biomass, variable charge soil (Typic Aquult) using an incubation study activity and community diversity were assessed in a representative Cadmium was added as CdCNO3)2 to reach a concentration range of 0-16 mg Cd/kg soil. Soil extractable Cd generally increased with Cd loading rate, but decreased with incubation time. Soil microbial biomass was enhanced at low Cd levels (0.5-1 mg/kg), but was inhibited consistently with increasing Cd rate. The ratio of microbial biomass C/N varied with Cd treatment levels, decreasing at low Cd rate (〈0.7 mg/kg available Cd), but increasing progressively with Cd loading. Soil respiration was restrained at low Cd loading (〈1 mg/kg), and enhanced at higher Cd levels. Soil microbial metabolic quotient (MMQ) was generally greater at high Cd loading (1-16 mg/kg). However, the MMQ is also affected by other factors. Cd contamination reduces species diversity of soil microbial communities and their ability to metabolize different C substrates. Soils with higher levels of Cd contamination showed decreases in indicator phospholipids fatty acids (PLFAs) for Gram-negative bacteria and actinomycetes, while the indicator PLFAs for Gram-positive bacteria and fungi increased with increasing levels of Cd contamination. 展开更多
关键词 Cadmium (Cd) microbial activity microbial community SOIL
下载PDF
Dynamics of Microbial Activity Related to N Cycling in Cd-Contaminated Soil During Growth of Soybean 被引量:1
3
作者 YANG Ye CHEN Ying-Xu +1 位作者 TIAN Guang-Ming ZHANG Zi-Jian 《Pedosphere》 SCIE CAS CSCD 2007年第3期383-388,共6页
The potential influences of cadmium (Cd) on the biochemical processes of the soil nitrogen (N) cycle, along with the dynamics of ammonification, nitrification, and denitrification processes in the rhizosphere and non-... The potential influences of cadmium (Cd) on the biochemical processes of the soil nitrogen (N) cycle, along with the dynamics of ammonification, nitrification, and denitrification processes in the rhizosphere and non-rhizosphere (bulk soil), respectively, were investigated in a Cd-stressed system during an entire soybean growing season. In terms of Cd pollution at the seedling stage, the ammonifying bacteria proved to be the most sensitive microorganisms, whereas the effects of Cd on denitrification were not obvious. Following the growth of soybeans, the influences of Cd on ammonification in the bulk soil were: toxic impacts at the seedling stage, stimulatory effects during the early flowering stage, and adaptation to the pollutant during the podding and ripening stages. Although nitrification and denitrification in the bulk soil decreased throughout the entire growth cycle, positive adaptation to Cd stress was observed during the ripening stage. Moreover, during the ripening stage, denitrification in the bulk soil under high Cd treatment (20 mg kg-1) was even higher than that in the control, indicating a probable change in the ecology of the denitrifying microbes in the Cd-stressed system. Changes in the activity of microbes in the rhizosphere following plant growth were similar to those in the non-rhizosphere in Cd treatments; however, the tendency of change in the rhizosphere seemed to be more moderate. This suggested that there was some mitigation of Cd stress in the rhizosphere. 展开更多
关键词 CADMIUM microbial activity nitrogen cycle RHIZOSPHERE
下载PDF
Changes in Soil Microbial Activity and Community Composition as a Result of Selected Agricultural Practices 被引量:2
4
作者 Martyna Glodowska Malgorzata Wozniak 《Agricultural Sciences》 2019年第3期330-351,共22页
For a constantly growing human population, healthy and productive soil is critical for sustainable delivery of agricultural products. The soil microorganisms play a crucial role in soil structure and functioning. They... For a constantly growing human population, healthy and productive soil is critical for sustainable delivery of agricultural products. The soil microorganisms play a crucial role in soil structure and functioning. They are responsible for soil formation, ecosystem biogeochemistry, cycling of nutrients and degradation of plant residues and xenobiotics. Certain agricultural treatments, such as fertilizers and pesticides applications, crop rotation, or soil amendment addition, influence the composition, abundance and function of bacteria and fungi in the soil ecosystems. Some of these practices have rather negative effects;others can help soil microorganisms by creating a friendlier habitat or providing nutrients. The changes in microbial community structure cannot be fully captured with traditional methods that are limited only to culturable organisms, which represent less than 1% of the whole population. The use of new molecular techniques such as metagenomics offers the possibility to better understand how agriculture affects soil microbiota. Therefore, the main goal of this review is to discuss how common farming practices influence microbial activity in the soil, with a special focus on pesticides, fertilizers, heavy metals and crop rotation. Furthermore, potential practices to mitigate the negative effects of some treatments are suggested and treatments that can beneficially influence soil microbiota are pointed out. Finally, application of metagenomics technique in agriculture and perspectives of developing efficient molecular tools in order to assess soil condition in the context of microbial activities are underlined. 展开更多
关键词 Agricultural Practices microbial activity Soil Microorganisms
下载PDF
Biomass and microbial activity in a biofilter during backwashing
5
作者 白宇 张杰 +2 位作者 李一凡 郜玉楠 李泳 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE EI CAS CSCD 2005年第5期427-432,共6页
Biomass and microbial activity in backwashing processes of a biofilter for tertiary treatment were investigated. The microbial groups revealed new distribution along the biofilter depth after low flow rate backwashing... Biomass and microbial activity in backwashing processes of a biofilter for tertiary treatment were investigated. The microbial groups revealed new distribution along the biofilter depth after low flow rate backwashing for a short time. Then the start-up process was accelerated by backwashing. The biomass profile and microbial activity profile both varying with depth before and after backwashing, can be mathematically described by quadratic equations. Using the profiles, the difference of oxygen demand can be calculated to determine the airflow rate during backwashing. Combined with the difference between biofilters and rapid gravity filters, analysis of biomass and microbial activity can determine more accurately the required airflow rate during backwashing. 展开更多
关键词 BIOFILTER BACKWASHING BIOMASS microbial activity Oxygen demand
下载PDF
Combined Effects of Nutrient and Pesticide Management on Soil Microbial Activity in Hybrid Rice Double Annual Cropping System
6
作者 XIEXiao-mei LIAOMin +1 位作者 LIUWei-ping SusanneKLOSE 《Rice science》 SCIE 2004年第3期140-146,共7页
Combined effects on soil microbial activity of nutrient and pesticide management in hybrid rice double annual cropping system were studied. Results of field experiment demonstrated significant changes in soil microbia... Combined effects on soil microbial activity of nutrient and pesticide management in hybrid rice double annual cropping system were studied. Results of field experiment demonstrated significant changes in soil microbial biomass phospholipid contents, abundance of heterotrophic bacteria and proteolytic bacteria, electron transport system (ETS)/dehydrogenase activity, soil protein contents under different management practices and at various growth stages. Marked depletions in the soil microbial biomass phospholipid contents were found with the advancement of crop growth stages, while the incorporation of fertilizers and/or pesticides also induced slight changes, and the lowest microbial biomass phospholipid content was found with pesticides application alone. A decline in the bacterial abundance of heterotrophic bacteria and proteolytic bacteria was observed during the continuance of crop growth, while the lowest abundance of heterotrophic bacteria and proteolytic bacteria was found with pesticides application alone, which coincided with the decline of soil microbial biomass. A consistent increase in the electron transport system activity was measured during the different crop growth stages of rice. The use of fertilizers (NPK) alone or combined with pesticides increased it, while a decline was noticed with pesticides application alone as compared with the control. The soil protein content was found to be relatively stable with fertilizers and/or pesticides application at various growth stages in both crops undertaken, but notable changes were detected at different growth stages. 展开更多
关键词 nutrient management pesticide management soil microbial activity hybrid rice
下载PDF
Lindane Degradation and Effects on Soil Microbial Activity
7
作者 M. FARGHALY S. M. A. D. ZAYED +2 位作者 F. MAHDY AND SOLIMAN M. SOLIMAN (National Research Centre, Dekki, Chiro, Egypt Middle EasternRegional Radioisotopes Centre for the Arab Countries , Dokki, Chiro, Egypt) 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 1998年第3期218-225,共8页
The degradation of U-14C-lindane in two Egyptian soils was determined in a three-month laboratory incubation. Lindane mineralization was slow and limited in both soils. Evolution of 14CO2 increased with time but only ... The degradation of U-14C-lindane in two Egyptian soils was determined in a three-month laboratory incubation. Lindane mineralization was slow and limited in both soils. Evolution of 14CO2 increased with time but only reached 3. 5 to 5. 5 % of the initial 14C-concentration within 90 days. At that time both soils contained about 88 % of the applied radiocarbon; 33 % to 37% of the initial dose was unextractable and assumed bound to the soils. The methanol-ex-tractable 14C primarily contained lindane with traces of minor metabolites. Radiorespirometry was used to eva1uate the effect of lindane on soil microbial activity. Low concentrations of the insecticide initially supressed 14CO2 evolution from U-14C-glucose and microbial activity was significantly inhibited by 10 mg lindane/kg soil. 展开更多
关键词 CO USA Lindane Degradation and Effects on Soil microbial activity
下载PDF
Effect of Different Potting Mixtures on Growth and Yield of Soybean (Glycine max L.) and Soil Microbial Activity
8
作者 Nilanthi Dahanayake Kankanam Pathiranage Iroshini Inoka Lanka Aloka Lanka Ranawake 《Journal of Agricultural Science and Technology(B)》 2014年第3期176-179,共4页
Soybean (Glycine max: Fabaceae) is a mycotrophic (mycorrhizal) crop grown commercially for human consumption. Seven different fertilizer mixtures, namely cow dung, coir dust, mush room medium waste, saw dust, com... Soybean (Glycine max: Fabaceae) is a mycotrophic (mycorrhizal) crop grown commercially for human consumption. Seven different fertilizer mixtures, namely cow dung, coir dust, mush room medium waste, saw dust, compost, decaying leaves and field soil with standard dose of NPK (control) were used for this experiment. The variety used was PM 25. Soil microbial activity was measured using CO2 evolution method. The experiment was carried out as a complete randomized block design with five replicates at the rate of eight plants per replicate. Average number of leaves on 25-day and 45-day old plants, shoot-length, root-length, number of pods per plant, wet weight of pod per plant, dry weight of pod per plant, plant wet weight, plant dry weight and seed dry weight per pod were measured. All management practices were conducted according to recommendations of the Department of Agriculture from seed germination to harvesting. Data were analyzed using SAS program (9.1.3). Highest number of pods/plant (100, 124, 102, 106) and dry-seed-weight in g/plant (12, 14.8, 12, 12) were recorded in those grown in cow dung, compost, decaying leaves and inorganic mixture (control) whereas the lowest pod production (8.7 pods/plant) and seed dry weight (1.0 g/plant) was recorded in saw dust. Instead of inorganic fertilizer there is possibility to use organic potting mixtures like compost and decaying leaves which gave a significant difference in crop productivity as compared to other treatments. Significantly highest mean microbial activity was observed in potting media filled with coir dust. 展开更多
关键词 Soybean (Glycine max L.) fertilizer mixtures microbial activity.
下载PDF
Effects of Different Land Use Patterns on Soil Microbial Quantity and Activity in Hongta District,Yuxi City 被引量:1
9
作者 陈艳 刘家忠 何倩倩 《Agricultural Science & Technology》 CAS 2016年第11期2535-2538,共4页
[Objective] This study aimed to investigate the effects of different land use patterns on soil ecological environment. [Method] Total three representative land use patterns (corn field, cherry tree land, wood land) ... [Objective] This study aimed to investigate the effects of different land use patterns on soil ecological environment. [Method] Total three representative land use patterns (corn field, cherry tree land, wood land) were selected from Hongta District, Yuxi City, and under these three patterns, soil microbial quantity and activity were studied. [Result] Under the three land use patterns, soil microorganisms were domi- nated by bacteria; soil microbial quantity ranked as wood land's〉cheery tree land's〉 corn field's; and total microbial activity, catalase activity and urease activity all ranked as cherry tree land's〉wood land's〉corn field's. [Conclusion] Soil microbial activity and functions are related to farmland management measures, as well as land use pattern and soil nutrients. 展开更多
关键词 Land use pattern Total quantity of microorganisms microbial activity Hongta District of Yuxi City
下载PDF
Isobaric enzymatic assays reveal depth-dependent variation in microbial ectoenzyme activities in the deepest ocean on Earth
10
作者 Junwei CAO Jiahua WANG +5 位作者 Hongge ZHANG Junhao DENG Binbin PAN Jiawang CHEN Li ZHANG Jiasong FANG 《Science China Earth Sciences》 2025年第1期185-194,共10页
Microbial ectoenzymes play essential roles in the transformation and mineralization of organic matter in the ocean.However,conventional methods for measuring microbial ectoenzyme activities(MEAs)in the deep ocean unde... Microbial ectoenzymes play essential roles in the transformation and mineralization of organic matter in the ocean.However,conventional methods for measuring microbial ectoenzyme activities(MEAs)in the deep ocean under atmospheric conditions can misrepresent the metabolic activities of indigenous microbial communities.To overcome this limitation,we measured the activities of three microbial ectoenzymes(aminopeptidase,α-glucosidase,andβ-glucosidase)under both atmospheric and in situ pressure conditions in seawater collected using pressure-retaining and non-pressure-retaining samplers in the Challenger Deep,Mariana Trench.In the case of aminopeptidase andα-glucosidase,the highest isobaric MEAs were observed in the surface layer(50 m),followed by those at abyssopelagic depths(4,000–6,000 m)for aminopeptidase,hadal realm(10,903 m)forα-glucosidase,whileβ-glucosidase activity exhibited the highest value at 10,903 m.Furthermore,the isobaric MEAs in hadal waters were commonly found to be higher than the decompressed counterparts,highlighting the importance of pressure-retaining sampling and isobaric enzymatic assays.The half-saturation constant(K_(m))showed a general decreasing trend with depth,suggesting that the deep ocean microbes might have adapted to the high-pressure and oligotrophic environment by increasing their ectoenzyme's affinity to substrate.Furthermore,particle-free MEAs contribute more to the total MEAs in the deep ocean than particle-associated MEAs,suggesting the significance of cell-associated and dissolved ectoenzymes in ocean ecosystems.This study provides a foundation for future investigations of MEAs in the ocean and has important implications for understanding the dynamics of microbially mediated biogeochemical cycling in marine ecosystems. 展开更多
关键词 Pressure-retaining sampling microbial ectoenzyme activity Deep-sea microbes High pressure Mariana Trench
原文传递
Differences in Soil Microbial Biomass and Activity for Six Agroecosystems with a Management Disturbance Gradient 被引量:11
11
作者 ZHANGWei-Jian FENGJin-Xia +1 位作者 J.WU K.PARKER 《Pedosphere》 SCIE CAS CSCD 2004年第4期441-448,共8页
Different management practices in six agroecosystems located near Goldsboro, NC, USA were conducted including a successional field (SU), a plantation woodlot (WO), an integrated cropping system with animals (IN), an o... Different management practices in six agroecosystems located near Goldsboro, NC, USA were conducted including a successional field (SU), a plantation woodlot (WO), an integrated cropping system with animals (IN), an organic farming system (OR), and two cash-grain cropping systems employing either tillage (CT) or no-tillage (NT) to examine if and how microbial biomass and activity differ in response to alterations in disturbance intensity from six land management strategies. Results showed that soil microbial biomass and activity differed, with microbial activity in intermediately disturbed ecosystems (NT, OR, IN) being significantly higher (P < 0.01) than systems with either high or low disturbance intensities. There was also a significant and a highly significant ecosystem effect from the treatments on microbial biomass C (MBC) (P < 0.05) and on microbial activity (respiration) (P < 0.01), respectively. Multiple comparisons of mean respiration rates distinctly separated the six ecosystem types into three groups: CT < NT, SU and WO < OR and IN.Thus, for detecting microbial response to disturbance changes these results indicated that the active component of the soil microbial community was a better indicator than total biomass. 展开更多
关键词 AGROECOSYSTEMS carbon retention disturbance intensity microbial biomass soil microbial activity
下载PDF
Methyl-β-cyclodextrin enhanced biodegradation of polycyclic aromatic hydrocarbons and associated microbial activity in contaminated soil 被引量:10
12
作者 Peter Christie 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2012年第5期926-933,共8页
The contamination of soils by polycyclic aromatic hydrocarbons (PAHs) is a widespread environmental problem and the remediation of PAHs from these areas has been a major concern. The effectiveness of many in situ bi... The contamination of soils by polycyclic aromatic hydrocarbons (PAHs) is a widespread environmental problem and the remediation of PAHs from these areas has been a major concern. The effectiveness of many in situ bioremediation systems may be constrained by low contaminant bioavailability due to limited aqueous solubility or a large magnitude of sorption. The objective of this research was to evaluate the effect of methyl-β-cyclodextrin (MCD) on bioaugmentation by Paracoccus sp. strain HPD-2 of an aged PAH-contaminated soil. When 10% (W/W) MCD amendment was combined with bioaugmentation by the PAH-degrading bacterium Paracoccus sp. strain HPD-2, the percentage degradation of total PAHs was significantly enhanced up to 34.8%. Higher counts of culturable PAH- degrading bacteria and higher soil dehydrogenase and soil polyphenol oxidase activities were observed in 10% (W/W) MCD-assisted bioaugmentation soil. This MCD-assisted bioaugmentation strategy showed significant increases (p 〈 0.05) in the average well color development (AWCD) obtained by the BIOLOG Eco plate assay, Shannon-Weaver index (H) and Simpson index (λ) compared with the controls, implying that this strategy at least partially restored the microbiological functioning of the PAH-contaminated soil. The results suggest that MCD-aided bioaugmentation by Paracoccus sp. strain HPD-2 may be a promising practical bioremediation strategy for aged PAH-contaminated soils. 展开更多
关键词 polycyclic aromatic hydrocarbons methyl-β-cyclodextrin BIODEGRADATION Paracoccus sp. strain HPD-2 microbial activity
原文传递
Variation of soil enzyme activity and microbial biomass in poplar plantations of different genotypes and stem spacings 被引量:6
13
作者 Ye Li Liping Zhang +2 位作者 Shengzuo Fang Ye Tian Jiao Guo 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第4期958-967,共10页
To improve the productivity of poplar planta- tions, a field experiment of split-plot design with four tree spacings and three poplar clones was established, and four soil enzyme activities and microbial biomass were ... To improve the productivity of poplar planta- tions, a field experiment of split-plot design with four tree spacings and three poplar clones was established, and four soil enzyme activities and microbial biomass were monitored in the trial. Soil enzyme activities, in most cases, were significantly higher in topsoil (0-10 cm) than in lower horizons (10-20 cm). Soil cellulase, catalase and protease activities during the growing season were higher than during the non-growing season, while invertase activity followed the opposite trend. Soil invertase, cellulase and catalase activities varied by poplar clone but soil protease activity did not. Cellulase and protease activities in the plantation at 5 × 5 m spacing were significantly higher than in the other spacings. The highest catalase activity was recorded at 6 × 6 m spacing. At the same planting density, invertase activity was greater in square spacings than in rectangular spacings. Soil microbial biomass was also significantly affected by seedling spacing and poplar clone. The mean soil MBC was significantly lower in topsoil than in the lower horizon, while MBN showed the opposite pattern. Significantly positive correlations were observed among soil cellulase, protease and catalase activities (p 〈0.01), whereas soil invertase activity was negatively and significantly correlated with cellulase, protease and catalase activities (p 〈 0.01). Soil microbial biomass and enzyme activities were not correlated except for a significantly negative correlation between soil MBC and catalase activities. Variations in soil enzyme activity and microbial biomass in different poplar plantations suggest that genotype and planting spacing should be considered when modeling soil nutrient dynamics and managing for long-term site productivity. 展开更多
关键词 microbial activity Nutrient availability Planting density Poplar clone Seasonal variation
下载PDF
Dissipation of polycyclic aromatic hydrocarbons and microbial activity in a field soil planted with perennial ryegrass 被引量:6
14
作者 Dengqiang FU Ying TENG +5 位作者 Yuanyuan SHEN Mingming SUN Chen TU Yongming LUO Zhengao LI Peter CHRISTIE 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2012年第3期330-335,共6页
Dissipation and plant uptake of polycyclic aromatic hydrocarbons (PAHs) in contaminated agricul- tural soil planted with perennial ryegrass were investigated in a field experiment. After two seasons of grass cultiva... Dissipation and plant uptake of polycyclic aromatic hydrocarbons (PAHs) in contaminated agricul- tural soil planted with perennial ryegrass were investigated in a field experiment. After two seasons of grass cultivation the mean concentration of 12 PAHs in soil decreased by 23.4% compared with the initial soil. The 3-, 4-, 5-, and 6- ring PAHs were dissipated by 30.9%, 25.5%, 21.2%, and 16.3% from the soil, respectively. Ryegrass shoots accumulated about 280 ug.kg1, shoot dry matter biomass reached 2.48 x 104kg-ha1, and plant uptake accounted for about 0.99% of the decrease in PAHs in the soil. Significantly higher soil enzyme activities and microbial community functional diversity were observed in planted soil than that in the unplanted control. The results suggest that planting ryegrass may promote the dissipation of PAHs in long-term contaminated agricultural soil, and plant-promoted microbial degradation may be a main mechanism of phytoremediation. 展开更多
关键词 perennial ryegrass polycyclic aromatic hydrocarbon bioremediation plant uptake soil microbial activity
原文传递
Characteristics and Influencing Factors of the Microbial Concentration and Activity in Atmospheric Aerosols over the South China Sea
15
作者 QI Jianhua YIN Yidan +3 位作者 XIE Jiamin LI Mengzhe DING Xue LI Hongtao 《Journal of Ocean University of China》 SCIE CAS CSCD 2021年第2期257-270,共14页
Oceans are important sources of microbes in atmospheric aerosols;however, information about the characteristics of airborne microbes and their influencing factors over oceans is lacking. Here we report the characteris... Oceans are important sources of microbes in atmospheric aerosols;however, information about the characteristics of airborne microbes and their influencing factors over oceans is lacking. Here we report the characteristics of the microbial abundance and activity in aerosols sampled near the sea surface over the South China Sea(SCS) from May to June 2016. The airborne microbial concentration range in the aerosols was 1.68?105 to 4.84?105 cells m-3 over the SCS, reflecting an average decrease of 40% – 54% over the SCS compared with that in the samples from the coastal region of Qingdao. About 63% – 76% of the airborne microbes occurred in coarse particles(> 2.1 ?m), with a variable size distribution over the SCS. The microbial activity range in aerosols, measured by the fluorescein diacetate(FDA) hydrolysis method, was 2.09 – 11.97 ng m-3 h-1 sodium fluorescein(SF) over the SCS, which was 15% – 79% lower than that over the coastal region. These values reflected a different spatial distribution over the SCS from that of the microbial concentration. Except for certain samples, all samples had 68% of the microbial activity occurring in coarse particles. Correlation analysis showed that the microbial abundance and activity were positively correlated with the aerosol, organic carbon(OC), and water-soluble organic carbon(WSOC) concentrations, indicating that the airborne microbes may be related to the reactions of certain water-soluble organic chemicals in the atmosphere. Moreover, the concentrations of airborne microbes were significantly negatively correlated with the horizontal offshore distance. The microbial concentration and activity were significantly correlated with wind speed. 展开更多
关键词 microbes AEROSOLS microbial activity size distribution WSOC
下载PDF
Effect of Lead Contamination on Soil Microbial Activity Measured by Microcalorimetry
16
作者 盖楠 杨永亮 +3 位作者 黎涛 姚俊 王飞 陈辉伦 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2011年第7期1541-1547,共7页
Microcalorimetry was used to investigate the microbial activity in three types of soil (orchard soil, crop soil, forest soil) in Wuhan, China, and to evaluate the influence of different concentrations of lead (Pb^... Microcalorimetry was used to investigate the microbial activity in three types of soil (orchard soil, crop soil, forest soil) in Wuhan, China, and to evaluate the influence of different concentrations of lead (Pb^2+) on soil microbial activity. The experimental results revealed that due to different physical and chemical characteristics of the soils, soil microbial activity in three soil samples were in a descending sequence: orchards soil, crops soil, forest soil. Six levels ofPb viz. 0, 10, 20, 40, 80, 160 μg·g^-1 were applied in these soils, and the results showed that an in- crease of the amount of Pb^2+ is associated with a decrease in microbial activity in the soils due to the toxic effect of Pb^2+. In order to gain further insight of the sequential change of microorganisms, determination of colony forming units (CFU) was performed to provide a negative linear correlation between the heat effect and the respective number of microorganisms in the system. 展开更多
关键词 soil microbial activity MICROCALORIMETRY lead contamination
原文传递
Microbial Community Characteristics in a Degraded Wetland of the Yellow River Delta 被引量:29
17
作者 WANG Zhen-Yu XIN Yuan-Zheng +3 位作者 GAO Dong-Mei LI Feng-Min J. MORGAN XING Bao-Shan 《Pedosphere》 SCIE CAS CSCD 2010年第4期466-478,共13页
Five different sites with a soluble salt gradient of 3.0-17.7 g kg^-1 dry soil from the coast to the inland were selected, and the microbial population size, activity and diversity in the rhizospheres of five common p... Five different sites with a soluble salt gradient of 3.0-17.7 g kg^-1 dry soil from the coast to the inland were selected, and the microbial population size, activity and diversity in the rhizospheres of five common plant species and the adjacent bulk soils (non-rhizosphere) were compared in a degraded wetland of the Yellow River Delta, Shandong Province, China to study the effects of soil environment (salinity, seasonality, depth, and rhizosphere) on microbial communities and the wetland's ecological function, thus providing basic data for the bioremediation of degraded wetlands. There was a significant negative linear relationship between the salinity and the total number of microorganisms, overall microbial activity, or culturable microbial diversity. Salinity adversely affected the microbial community, and higher salinity levels resulted in smaller and less active microbial communities. Seasonal changes were observed in microbial activity but did not occur in the size and diversity. The microbial size, activity and diversity decreased with increasing soil depth. The size, activity and diversity of culturable microorganisms increased in the rhizospheres. All rhizospheres had positive effects on the microbial communities, and common seepweed had the highest rhizosphere effect. Three halophilic bacteria (Pseudomonas mendocina, Burkholderia glumae, and Acinetobacter johnsonii) were separated through BIOLOG identification, and common seepweed could be recommended for bioremediation of degraded wetlands in the Yellow River Delta. 展开更多
关键词 microbial activity microbial diversity RHIZOSPHERE SALINITY soil microorganisms
下载PDF
Soil resource availability impacts microbial response to organic carbon and inorganic nitrogen inputs 被引量:2
18
作者 ZHANG Wei-jian W.ZHU S.HU 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2005年第5期705-710,共6页
Impacts of newly added organic carbon (C) and inorganic nitrogen (N) on the microbial utilization of soil organic matter are important in determining the future C balance of terrestrial ecosystems. We examined mic... Impacts of newly added organic carbon (C) and inorganic nitrogen (N) on the microbial utilization of soil organic matter are important in determining the future C balance of terrestrial ecosystems. We examined microbial responses to cellulose and ammonium nitrate additions in three soils with very different C and N availability. These soils included an organic soil( 14.2% total organic C, with extremely high extractable N and low labile C), a forest soi1(4.7% total organic C, with high labile C and extremely low extractable N), and a grassland soil(1.6% total organic C, with low extractable N and labile C). While cellulose addition alone significantly enhanced microbial respiration and biomass C and N in the organic and grassland soils, it accelerated only the microbial respiration in the highly-N limited forest soil. These results indicated that when N was not limited, C addition enhanced soil respiration by stimulating both microbial growth and their metabolic activity, New C inputs lead to elevated C release in all three soils, and the magnitude of the enhancement was higher in the organic and grassland soils than the forest soil. The addition of cellulose plus N to the forest and grassland soils initially increased the microbial biomass and respiration rates, but decreased the rates as time progressed. Compared to cellulose addition alone, cellulose plus N additions increased the total C-released in the grassland soil, but not in the forest soil. The enhancement of total C- released induced by C and N addition was less than 50% of the added-C in the forest soil after 96 d of incubation, in contrast to 87.5% and 89.0% in the organic and grassland soils. These results indicate that indigenous soil C and N availability substantially impacts the allocation of organic C for microbial biomass growth and/or respiration, potentially regulating the turnover rates of the new organic C inputs. 展开更多
关键词 CELLULOSE inorganic nitrogen microbial biomass microbial activity carbon sequestration
下载PDF
Anti‑oral Microbial Flavanes from Broussonetia papyrifera Under the Guidance of Bioassay 被引量:3
19
作者 Chang-An Geng Meng-Hong Yan +1 位作者 Xue-Mei Zhang Ji-Jun Chen 《Natural Products and Bioprospecting》 CAS 2019年第2期139-144,共6页
A new favane,bropapyriferol(1),and eleven known ones were isolated from the EtOAc part of Broussonetia papyrifera under the guidance of bioassay.The structure of compound 1 was determined by extensive 1D and 2D NMR,[... A new favane,bropapyriferol(1),and eleven known ones were isolated from the EtOAc part of Broussonetia papyrifera under the guidance of bioassay.The structure of compound 1 was determined by extensive 1D and 2D NMR,[α]_(D) spectroscopic data and quantum computation.Daphnegiravan F(2)and 5,7,3′,4′-tetrahydroxy-3-methoxy-8,5′-diprenylfavone(3)showed signifcantly anti-oral microbial activity against fve Gram-positive strains and three Gram-negative strains in vitro.Especially,compound 3 was more potent in suppressing Actinomyces naeslundii and Porphyromonas gingivalis(MIC=1.95 ppm)than the positive control,triclosan. 展开更多
关键词 Bropapyriferol Broussonetia papyrifera Anti-oral microbial activity
下载PDF
Changes of soil microbial communities during decomposition of straw residues under different land uses 被引量:9
20
作者 ZHANG Hong XU Wenxin +3 位作者 LI Yubao LYU Jialong CAO Yingfei HE Wenxiang 《Journal of Arid Land》 SCIE CSCD 2017年第5期666-677,共12页
Monitoring soil microbial communities can lead to better understanding of the transformation processes of organic carbon in soil. The present study investigated the changes of soil microbial communities during straw d... Monitoring soil microbial communities can lead to better understanding of the transformation processes of organic carbon in soil. The present study investigated the changes of soil microbial communities during straw decomposition in three fields, i.e., cropland, peach orchard and vineyard. Straw decomposition was monitored for 360 d using a mesh-bag method. Soil microbial metabolic activity and functional diversity were measured using the Biolog-Eco system. In all three fields, dried straws with a smaller size decomposed faster than their fresh counterparts that had a larger size. Dried corn straw decomposed slower than dried soybean straw in the early and middle stages, while the reverse trend was found in the late stage. The cropland showed the highest increase in microbial metabolic activity during the straw decomposition, whereas the peach orchard showed the lowest. There was no significant change in the species dominance or evenness of soil microbial communities during the straw decomposition. However, the species richness fluctuated significantly, with the peach orchard showing the highest richness and the cropland the lowest. With different carbon sources, the peach orchard utilised carbon the most, followed by the cropland and the vineyard. In all three fields, carbon was utilized in following decreasing order: saccharides〉amino acids〉polymers〉polyamines〉carboxylic acids〉aromatic compounds. In terms of carbon-source utilization, soil microbial communities in the peach orchard were less stable than those in the cropland. The metabolic activity and species dominance of soil microbial communities were negatively correlated with the straw residual percentage. Refractory components were primarily accumulated in the late stages, thus slowing down the straw decomposition. The results showed that dried and crushed corn straw was better for application in long-term fields. The diversity of soil microbial communities was more stable in cropland than in orchards during the straw decomposition. 展开更多
关键词 long-term field straw decomposition soil microbial activity functional diversity carbon utilisation
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部