To enhance the microbiologically influenced corrosion(MIC)resistance of FeCoNiCrMn high entropy alloy(HEAs),a series of Fe_(x)Cu_((1−x))CoNiCrMn(x=1,0.75,0.5,and 0.25)HEAs were prepared.Microstructural characteristics...To enhance the microbiologically influenced corrosion(MIC)resistance of FeCoNiCrMn high entropy alloy(HEAs),a series of Fe_(x)Cu_((1−x))CoNiCrMn(x=1,0.75,0.5,and 0.25)HEAs were prepared.Microstructural characteristics,corrosion behavior(morphology observation and electrochemical properties),and antimicrobial performance of Fe_(x)Cu_((1−x))CoNiCrMn HEAs were evaluated in a medium inoculated with typical corrosive microorganism Pseudomonas aeruginosa.The aim was to identify copper-containing FeCoNiCrMn HEAs that balance corrosion resistance and antimicrobial properties.Results revealed that all Fe_(x)Cu_((1−x))CoNiCrMn(x=1,0.75,0.5,and 0.25)HEAs exhibited an FCC(face centered cubic)phase,with significant grain refinement observed in Fe_(0.75)Cu_(0.25)CoNiCrMn HEA.Electrochemical tests indicated that Fe_(0.75)Cu_(0.25)CoNiCrMn HEA demonstrated lower corrosion current density(i_(corr))and pitting potential(E_(pit))compared to other Fe_(x)Cu_((1−x))CoNiCrMn HEAs in P.aeruginosa-inoculated medium,exhibiting superior resistance to MIC.Anti-microbial tests showed that after 14 d of immersion,Fe_(0.75)Cu_(0.25)CoNiCrMn achieved an antibacterial rate of 89.5%,effectively inhibiting the adhesion and biofilm formation of P.aeruginosa,thereby achieving resistance to MIC.展开更多
In this article, microbiologically influenced corrosion behavior of Fe3Al intermetallie compound in microorganism culture medium has been investigated by using weight loss methods, electrochemical techniques, and elec...In this article, microbiologically influenced corrosion behavior of Fe3Al intermetallie compound in microorganism culture medium has been investigated by using weight loss methods, electrochemical techniques, and electron microscopy. Polarization curves showed that a sharp electrical current peak caused by surface pitting could be observed after Fe3Al electrodes were immersed in culture medium for 15 days when the polarization potential was about -790 mV vs SCE. Based on the electrochemical impedance spectroscopy (EIS) and the equivalent circuit parameters of the associated system, the corrosion products were found to exhibit a two-layer structured feature and the microorganisms could induce pitting and erosion corrosion of the inner layer. In addition, the passivating film of the inner layer was absolutely destroyed by microbial metabolic products.展开更多
Reports on corrosion failure of cable bolts,used in mining and civil industries,have been increasing in the past two decades.The previous studies found that pitting corrosion on the surface of a cable bolt can initiat...Reports on corrosion failure of cable bolts,used in mining and civil industries,have been increasing in the past two decades.The previous studies found that pitting corrosion on the surface of a cable bolt can initiate premature failure of the bolt.In this study,the role of Acidithiobacillus ferrooxidans(A.ferrooxidans)bacterium in the occurrence of pitting corrosion in cable bolts was studied.Stressed coupons,made from the wires of cable bolts,were immersed in testing bottles containing groundwater collected from an underground coal mine and a mixture of A.ferrooxidans and geomaterials.It was observed that A.ferrooxidans caused pitting corrosion on the surface of cable bolts in the near-neutral environment.The presence of geomaterials slightly affected the p H of the environment;however,it did not have any significant influence on the corrosion activity of A.ferrooxidans.This study suggests that the common bacterium A.ferrooxidans found in many underground environments can be a threat to cable bolts'integrity by creating initiation points for other catastrophic failures such as stress corrosion cracking.展开更多
Microbiologically influenced corrosion is a global problem especially materials used in marine engineering.In that respect,inhibitors are widely used to control fouling and corrosion in marine systems.Most techniques ...Microbiologically influenced corrosion is a global problem especially materials used in marine engineering.In that respect,inhibitors are widely used to control fouling and corrosion in marine systems.Most techniques used in inhibitor production are expensive and considered hazardous to the ecosystem.Therefore,scientists are motivated to explore natsural and green products as potent corrosion inhibitors especially in nano size.In this study,antibacterial and anticorrosive properties of green silver nanoparticles(AgNPs)were studied through weight loss,electrochemical characterization,and surface analysis techniques.The corrosion of copper(Cu)in artificial seawater(ASW),Halomonas variabilis(H.variabilis)NOSK,and H.variabilis+AgNPs was monitored using electrochemical measurements like open circuit potential(OCP),electrochemical impedance spectroscopy(EIS),and potentiodynamic polarization curves.AgNPs showed excellent antibacterial activity against pathogenic microorganisms.Electrochemical studies demonstrate a noticeable decrease in OCP and current density in ASW containing H.variabilis+AgNPs compared to both ASW and ASW inoculated with bacterium,which confirmed the decrease of corrosion rate of copper.Furthermore,the obtained voltammograms show that the silver nanoparticles were adsorbed on the copper electrode surface from the corrosion solution.Thus,the results prove that the novel idea of green silver nanoparticles acts as an anticorrosive film in the marine environment.展开更多
The influence of welding defects on MIC (microbiologically influenced corrosion) was studied.The open circuit potential (OCP) was measured during MIC test. It was found that OCP shifted to a higher level when the syst...The influence of welding defects on MIC (microbiologically influenced corrosion) was studied.The open circuit potential (OCP) was measured during MIC test. It was found that OCP shifted to a higher level when the system was inoculated with bacteria and it decreased dramatically when MIC started. Among a series of welding defects golden heat tint was found the most susceptible to MIC. The tubercles over pitting were observed with SEM. Some elements inside of the tubercles were analysed with EDXA. Microbiological analysis of a corroded and a non-corroded sample revealed no significant difference between them with the exception of the number of the manganeseoxidising bacteria.展开更多
The corrosion behaviors of Al-6Mg-Zr and Al-6Mg-Zr-Sc in the sulfate-reducing bacteria (SRB) solution in anaerobic environment were studied using electrochemical, microbiological, and surface analysis methods. It wa...The corrosion behaviors of Al-6Mg-Zr and Al-6Mg-Zr-Sc in the sulfate-reducing bacteria (SRB) solution in anaerobic environment were studied using electrochemical, microbiological, and surface analysis methods. It was found that the oxide film was more compact owing to the addition of Sc resulting in the open circuit potential shifting by about 100mV positively. On the other hand, it was seen that the pitting sensitivity of Al-6Mg-Zr-Sc alloy in SRB solution decreased and its microbiologically influenced corrosion resistance was improved. Pitting corrosion occurring on the surface of the two alloys under the comprehensive action of the metabolism of SRB was observed by SEM. It was obtained by EDS that the corrosion degree increased with time and corrosion was furthered by deposition of the product.展开更多
The corrosion behavior of carbon steel in the medium of marine microorganisms was investigated by electrochemical impedance spectra, polarization curves, and so on. Experimental results showed that the corrosion poten...The corrosion behavior of carbon steel in the medium of marine microorganisms was investigated by electrochemical impedance spectra, polarization curves, and so on. Experimental results showed that the corrosion potential of carbon steel moved in a negative direction in the unpurified marine microorganism solution, and the polarization style of the cathodic process did not change. The electrochemical impedance spectra showed that the impedance value of the electrode decreased in the medium with bacteria, which indicated that the existence of microorganism could accelerate the corrosion progress of carbon steel.展开更多
The corrosion behaviors of Al-6Mg-Zr and Al-6Mg-Zr-Sc in sulfate-reducing bacteria(SRB) solution in the anaerobic environment were studied by electrochemical, microbiology and surface analysis methods. It is found t...The corrosion behaviors of Al-6Mg-Zr and Al-6Mg-Zr-Sc in sulfate-reducing bacteria(SRB) solution in the anaerobic environment were studied by electrochemical, microbiology and surface analysis methods. It is found that the oxide film is more compact resulting in the open circuit potential shifting about 100 mV positively due to the addition of Sc. On the other hand, it is demonstrated that pitting sensitivity of Al-6Mg-Zr-Sc alloy in the SRB solution is decreased and its microbiologically influenced corrosion resistance is improved.展开更多
Sulfate reducing bacteria(SRB) are often the culprits of microbiologically influenced corrosion(MIC) in anoxic environments because sulfate is a ubiquitous oxidant. MIC of carbon steel caused by SRB is the most intens...Sulfate reducing bacteria(SRB) are often the culprits of microbiologically influenced corrosion(MIC) in anoxic environments because sulfate is a ubiquitous oxidant. MIC of carbon steel caused by SRB is the most intensively investigated topic in MIC because of its practical importance. It is also because biogenic sulfides complicate mechanistic SRB MIC studies, making SRB MIC of carbon steel is a long-lasting topic that has generated considerable confusions. It is expedient to think that biogenic H_2S secreted by SRB acidifies the broth because it is an acid gas. However, this is not true because endogenous H_2S gets its H^+ from organic carbon oxidation and the fluid itself in the first place rather than an external source. Many people believe that biogenic H_2S is responsible for SRB MIC of carbon steel. However, in recent years,well designed mechanistic studies provided evidence that contradicts this misconception. Experimental data have shown that cathodic electron harvest by an SRB biofilm from elemental iron via extracellular electron transfer(EET) for energy production by SRB is the primary cause. It has been demonstrated that when a mature SRB biofilm is subjected to carbon source starvation, it switches to elemental iron as an electron source and becomes more corrosive. It is anticipated that manipulations of EET related genes will provide genetic-level evidence to support the biocathode theory in the future. This kind of new advances will likely lead to new gene probes or transcriptomics tools for detecting corrosive SRB strains that possess high EET capabilities.展开更多
Microbiologically influenced corrosion (MIC) is a major cause of corrosion damages, facility failures, and financial losses, making MIC an important research topic. Due to complex microbiological activities and a la...Microbiologically influenced corrosion (MIC) is a major cause of corrosion damages, facility failures, and financial losses, making MIC an important research topic. Due to complex microbiological activities and a lack of deep understanding of the interactions between biofilms and metal surfaces, MIC occurrences and mechanisms are difficult to predict and interpret. Many theories and mechanisms have been pro- posed to explain MIC. In this review, the mechanisms of MIC are discussed using hioenergetics, microbial respiration types, and biofilm extracellular electron transfer (EET). Two main MIC types, namely EET-MIC and metabolite MIC (M-ME), are discussed. This brief review provides a state of the art insight into MIC mechanisms and it helps the diagnosis and prediction of occurrences of MIC under anaerobic conditions in the oil and gas industry.展开更多
The TiSiN-Cu nanocomposite coating was deposited on F690 steel substrate by arc ion plating. The structure and composition, tribocorrosion behavior and anti-microbiologically influenced corrosion(MIC)properties of TiS...The TiSiN-Cu nanocomposite coating was deposited on F690 steel substrate by arc ion plating. The structure and composition, tribocorrosion behavior and anti-microbiologically influenced corrosion(MIC)properties of TiSiN-Cu coating were investigated. The results show that the TiSiN-Cu coating has unique nanocomposite structures. The results of tribocorrosion show that the potential and current change of F690 steel and TiSiN-Cu coatings tend to be opposite. The reason is that the F690 steel is non-passivated metal and the TiSiN-Cu coating has passivation phenomenon. The TiSiN-Cu coating possesses excellent tribocorrosion resistance. Cu ion released from TiSiN-Cu coating can effectively inhibit the corrosion caused by SRB.展开更多
Microbiologically influenced corrosion(MIC) is a big threat to the strength and safety of many metallic materials used in different environments throughout the world. The metabolites and bioactivity of the microorgani...Microbiologically influenced corrosion(MIC) is a big threat to the strength and safety of many metallic materials used in different environments throughout the world. The metabolites and bioactivity of the microorganisms cause severe deterioration on the metals. In this study, MIC of pure titanium(Ti) was studied in the presence of a highly corrosive aerobic marine bacterium Pseudomonas aeruginosa. The results obtained from electrochemical test showed that Ti was corrosion resistant in the abiotic culture medium after 14 d, while the increased corrosion current density(i_(corr)) obtained from polarization curves and the decreased charge transfer resistance(R_(ct)) from electrochemical impedance spectroscopy(EIS)indicated the accelerated corrosion of Ti caused by P. aeruginosa biofilm. For further confirmation of the above results, the surface of Ti was investigated using scanning electron microscopy(SEM), confocal laser scanning microscopy(CLSM) and X-ray photoelectron spectroscopy(XPS). According to the XPS results, TiO_2 was formed in both abiotic and biotic conditions, while unstable oxide Ti_2O_3 was detected in the presence of P. aeruginosa, leading to the defects in the passive film and localized corrosion. Pitting corrosion was investigated with the help of CLSM, and the largest pit depth found on Ti surface immersed in P. aeruginosa was 1.2 μm. Ti was not immune to MIC caused by P. aeruginosa.展开更多
An antibacterial 2205-Cu duplex stainless steel (DSS) was shown to inhibit the formation and growth of corrosive marine biofilms by direct contact with copper-rich phases and the release of Cu^2+ ions from the 2205...An antibacterial 2205-Cu duplex stainless steel (DSS) was shown to inhibit the formation and growth of corrosive marine biofilms by direct contact with copper-rich phases and the release of Cu^2+ ions from the 2205-Cu DSS surface. In this work, the microbiologically influenced corrosion (MIC) resistance of 2205- Cu DS5 in the presence of the corrosive marine bacterium Pseudornonos aeruginosa was investigated. The addition of copper improved the mechanical properties such as the yield strength, the tensile strength and the hardness of 2205 DSS. Electrochemical test results from linear polarization resistance (LPR), electrochemical impedance spectroscopy (EI5) and critical pitting temperature (CPT) measurements showed that 2205-Cu DSS possessed a larger polarization resistance (Rp), charge transfer resistance (Rct) and CPT values, indicating the excellent MIC resistance of2205-Cu DSS against the corrosive P. aeruginosa biofilm. The live]dead staining results and the SEM images of biofilm confirmed the strong antibacterial ability of 2205-Cu DSS. The largest pit depth of 2205-Cu DSS was considerably smaller than that of 2205 DSS after 14d in the presence ofP. aeruginosa (2.2 μm vs 12.5 μm). 2205-Cu DSS possessed a superior MIC resistance to regular 2205 DSS in the presence of aerobic P. aeruginosa.展开更多
Algae are reported to be corrosive,while little is known about the role of the algae associated bacteria in the corrosion process.In the present study,Halomonas titanicae was isolated from a culture of an alga strain,...Algae are reported to be corrosive,while little is known about the role of the algae associated bacteria in the corrosion process.In the present study,Halomonas titanicae was isolated from a culture of an alga strain,Spirulina platensis,and identified through 16 S rRNA gene analysis.Corrosion behavior of 304L stainless steel(SS)coupons in the presence and absence of H.titanicae was characterized by using electrochemical measurements and surface analysis.The results showed that H.titanicae significantly accelerated the corrosion rate and decreased the pitting potential of 304L SS in the biotic medium.After removal of the corrosion products and biofilms,severe pitting corrosion caused by H.titanicae was observed.The largest pit depth after 14 d reached 6.6μm,which was 5.5 times higher than that of the sterile control(1.2μm).This is the first report revealing that an alga associated bacterium can induce microbiologically influenced corrosion(MIC),and a further concern is raised that whether algae play a role in the MIC process.展开更多
The microbiologically influenced corrosion(MIC) mechanisms of copper by Pseudomonas aeruginosa as a typical strain of nitrate reducing bacteria(NRB) was investigated in this lab study.Cu was immersed in deoxygenated L...The microbiologically influenced corrosion(MIC) mechanisms of copper by Pseudomonas aeruginosa as a typical strain of nitrate reducing bacteria(NRB) was investigated in this lab study.Cu was immersed in deoxygenated LB-NO3 seawater inoculated with P.aeruginosa and incubated for 2 weeks.Results showed that this NRB caused pitting and uniform corrosion.The maximum pit depths after 7 d and 14 d in125 mL anaerobic vials with 50 mL broth were 5.1 μm and 9.1 μm,accompanied by specific weight losses of 1.3 mg/cm2(7 d) and 1.7 mg/cm2(14 d),respectively.Electrochemical measurements corroborated weight loss and pit depth data trends.Experimental results indicated that extracellular electron transfer for nitrate reduction was the main MIC mechanism and ammonia secreted by P.aeruginosa could also play a role in the overall Cu corrosion process.展开更多
The corrosion behavior of 304 stainless steel(SS)in the presence of aerobic halophilic archaea Natronorubrum tibetense was investigated.After 14 days of immersion,no obvious pitting pit was observed on the SS surface ...The corrosion behavior of 304 stainless steel(SS)in the presence of aerobic halophilic archaea Natronorubrum tibetense was investigated.After 14 days of immersion,no obvious pitting pit was observed on the SS surface in the sterile medium.By contrast,the SS exhibited serious pitting corrosion with the largest pit depth of 5.0μm in the inoculated medium after 14 days.The results of electrochemical tests showed that the barrier property of the passive film decreased faster in the inoculated medium.The X-ray photoelectron spectroscopy results indicated that the detrimental Fe2+and Cr6+increased in the passive film under the influence of archaea N.tibetense,which resulted in the accelerated deterioration of passive film and promoted the pitting corrosion.Combined with the energy starvation tests,the microbiologically influenced corrosion mechanism of 304 SS caused by halophilic archaea N.tibetense was discussed finally.展开更多
The electrochemical characteristics of 1Cr18Ni9Ti in sulphate-reducing bacteria (SRB) solutions and the biofilm of SRB on the surface of the 1Cr18Ni9Ti electrode were studied by electrochemical, microbiological, and...The electrochemical characteristics of 1Cr18Ni9Ti in sulphate-reducing bacteria (SRB) solutions and the biofilm of SRB on the surface of the 1Cr18Ni9Ti electrode were studied by electrochemical, microbiological, and surface analysis methods. Electrochemical impedance spectroscopy (EIS) of 1Cr18Ni9Ti was measured in the solutions with and without SRB at the culture time of 2, 4, 8 d, respectively. The measurement used two test methods, the nonimmersion electrode method and the immersion electrode method. It was found that the polarization resistance (Rp) of 1Cr18Ni9Ti in the solutions without SRB is the greatest for each test method. When using the nonimmersion electrode method, Rp shifts negatively at first and then positively, and the time constant is only one. Although using the immersion electrode method, the Rp shifts positively at first and then negatively, and the time constant also changes when the biofilm forms. The biofilm observed through SEM is with pores. It was demonstrated that SRB has accelerated corrosion action on 1Cr18Ni9Ti. The protection effect of the biofilm on the electrode depends on the compact degree of the film.展开更多
S32654 super austenitic stainless steel(SASS) is widely used in highly corrosive environments. However,its microbiologically influenced corrosion(MIC) behavior has not been reported yet. In this study, the corrosi...S32654 super austenitic stainless steel(SASS) is widely used in highly corrosive environments. However,its microbiologically influenced corrosion(MIC) behavior has not been reported yet. In this study, the corrosion behavior of S32654 SASS caused by a corrosive marine bacterium Pseudomonas aeruginosa was investigated using electrochemical measurements and surface analysis techniques. It was found that P. aeruginosa biofilm accelerated the corrosion rate of S325654 SASS, which was demonstrated by a negative shift of the open circuit potential(EOCP), a decrease of polarization resistance and an increase of corrosion current density in the culture medium. The largest pit depth of the coupons exposed in the P.aeruginosa broth for 14 days was 2.83 m, much deeper than that of the control(1.33 m) in the abiotic culture medium. It was likely that the P. aeruginosa biofilm catalyzed the formation of CrO_3, which was detrimental to the passive film, resulting in MIC pitting corrosion.展开更多
In the oil and gas industry,microbiologically influenced corrosion(MIC) is a major threat to hydrotest,a procedure which is required to certify whether a pipeline can be commissioned.Seawater is frequently used as a h...In the oil and gas industry,microbiologically influenced corrosion(MIC) is a major threat to hydrotest,a procedure which is required to certify whether a pipeline can be commissioned.Seawater is frequently used as a hydrotest fluid.In this bio film prevention lab study,an oilfield biofilm consortium was grown in an enriched artificial seawater anaerobically at 37℃ for 60 days.The combination of 100 ppm(w/w) 2,2-dibromo-3-nitrilopropionamide(DBNPA)+100 nM(180 ppb) Peptide A(a biofilm dispersal agent) led to extra SRB(sulfate reducing bacteria),APB(acid producing bacteria) and GHB(general heterotrophic bacteria) sessile cell count reductions of 0.9-log,0.8-log and 0.6-log,respectively,compared with the outcome obtained by using 100 ppm DBNPA only.The Peptide Aenhancement also led to extra reductions of 44 % in weight loss,43 % in maximum pit depth,and 54 % in corrosion current density.展开更多
Tetrakis hydroxymethyl phosphonium sulfate(THPS) was enhanced by a 14-mer Peptide A, with its core12-mer sequence mimicking part of Equinatoxin II protein, in the mitigation of sulfate reducing Desulfovibrio ferrophil...Tetrakis hydroxymethyl phosphonium sulfate(THPS) was enhanced by a 14-mer Peptide A, with its core12-mer sequence mimicking part of Equinatoxin II protein, in the mitigation of sulfate reducing Desulfovibrio ferrophilus MIC(microbiologically influenced corrosion) of X80 carbon steel. Results proved that50 ppm(w/w) THPS was sufficient to mitigate the D. ferrophilus biofilm, and its very agressive MIC(19.7mg/cm^(2) in 7 days or 1.31 mm/a), but not 20 ppm THPS. To achieve effective mitigation at a low dosage of THPS, biofilm-dispersing Peptide A was added to 20 ppm THPS in the culture medium. Sessile cell counts were reduced by 2-log and 4-log after enhancement by 10 ppb and 100 ppb Peptide A, respectively. Enhancement efficiency(further reduction in corrosion rate) reached 69% for 10 ppb Peptide A and 83% for100 ppb Peptide A compared with 20 ppm THPS alone treatment, indicating that Peptide A was a good biocide enhancer for THPS.展开更多
基金supported by the China Postdoctoral Science Foundation(No.2022M720401)the Postdoctoral Research Foundation of Shunde Innovation School,University of Science and Technology Beijing(No.2022BH007)the National Natural Science Foundation of China(No.52301074).
文摘To enhance the microbiologically influenced corrosion(MIC)resistance of FeCoNiCrMn high entropy alloy(HEAs),a series of Fe_(x)Cu_((1−x))CoNiCrMn(x=1,0.75,0.5,and 0.25)HEAs were prepared.Microstructural characteristics,corrosion behavior(morphology observation and electrochemical properties),and antimicrobial performance of Fe_(x)Cu_((1−x))CoNiCrMn HEAs were evaluated in a medium inoculated with typical corrosive microorganism Pseudomonas aeruginosa.The aim was to identify copper-containing FeCoNiCrMn HEAs that balance corrosion resistance and antimicrobial properties.Results revealed that all Fe_(x)Cu_((1−x))CoNiCrMn(x=1,0.75,0.5,and 0.25)HEAs exhibited an FCC(face centered cubic)phase,with significant grain refinement observed in Fe_(0.75)Cu_(0.25)CoNiCrMn HEA.Electrochemical tests indicated that Fe_(0.75)Cu_(0.25)CoNiCrMn HEA demonstrated lower corrosion current density(i_(corr))and pitting potential(E_(pit))compared to other Fe_(x)Cu_((1−x))CoNiCrMn HEAs in P.aeruginosa-inoculated medium,exhibiting superior resistance to MIC.Anti-microbial tests showed that after 14 d of immersion,Fe_(0.75)Cu_(0.25)CoNiCrMn achieved an antibacterial rate of 89.5%,effectively inhibiting the adhesion and biofilm formation of P.aeruginosa,thereby achieving resistance to MIC.
基金sponsored by the National Natural Science Foundation of China(Nos.50692090 and 50842061)the School Funds of Ocean University of China(2009126)
文摘In this article, microbiologically influenced corrosion behavior of Fe3Al intermetallie compound in microorganism culture medium has been investigated by using weight loss methods, electrochemical techniques, and electron microscopy. Polarization curves showed that a sharp electrical current peak caused by surface pitting could be observed after Fe3Al electrodes were immersed in culture medium for 15 days when the polarization potential was about -790 mV vs SCE. Based on the electrochemical impedance spectroscopy (EIS) and the equivalent circuit parameters of the associated system, the corrosion products were found to exhibit a two-layer structured feature and the microorganisms could induce pitting and erosion corrosion of the inner layer. In addition, the passivating film of the inner layer was absolutely destroyed by microbial metabolic products.
基金funding provided by the Australian Research Council(ARC)Linkage Projects(Nos.100200238 and 140100153)supported by Jennmar Australia Pty Ltd+5 种基金Glencore Australia Holdings Pty LtdIllawarra Coal Holdings Pty LtdSpringvale Coal Pty LtdAnglo Operations Pty LtdAnglo Coal AustraliaNarrabri Coal Operations Pty Ltd。
文摘Reports on corrosion failure of cable bolts,used in mining and civil industries,have been increasing in the past two decades.The previous studies found that pitting corrosion on the surface of a cable bolt can initiate premature failure of the bolt.In this study,the role of Acidithiobacillus ferrooxidans(A.ferrooxidans)bacterium in the occurrence of pitting corrosion in cable bolts was studied.Stressed coupons,made from the wires of cable bolts,were immersed in testing bottles containing groundwater collected from an underground coal mine and a mixture of A.ferrooxidans and geomaterials.It was observed that A.ferrooxidans caused pitting corrosion on the surface of cable bolts in the near-neutral environment.The presence of geomaterials slightly affected the p H of the environment;however,it did not have any significant influence on the corrosion activity of A.ferrooxidans.This study suggests that the common bacterium A.ferrooxidans found in many underground environments can be a threat to cable bolts'integrity by creating initiation points for other catastrophic failures such as stress corrosion cracking.
基金This research is funded by the Scientific and Technological Research Council of Turkey(TüBITAK,Project MAG#218 M508).
文摘Microbiologically influenced corrosion is a global problem especially materials used in marine engineering.In that respect,inhibitors are widely used to control fouling and corrosion in marine systems.Most techniques used in inhibitor production are expensive and considered hazardous to the ecosystem.Therefore,scientists are motivated to explore natsural and green products as potent corrosion inhibitors especially in nano size.In this study,antibacterial and anticorrosive properties of green silver nanoparticles(AgNPs)were studied through weight loss,electrochemical characterization,and surface analysis techniques.The corrosion of copper(Cu)in artificial seawater(ASW),Halomonas variabilis(H.variabilis)NOSK,and H.variabilis+AgNPs was monitored using electrochemical measurements like open circuit potential(OCP),electrochemical impedance spectroscopy(EIS),and potentiodynamic polarization curves.AgNPs showed excellent antibacterial activity against pathogenic microorganisms.Electrochemical studies demonstrate a noticeable decrease in OCP and current density in ASW containing H.variabilis+AgNPs compared to both ASW and ASW inoculated with bacterium,which confirmed the decrease of corrosion rate of copper.Furthermore,the obtained voltammograms show that the silver nanoparticles were adsorbed on the copper electrode surface from the corrosion solution.Thus,the results prove that the novel idea of green silver nanoparticles acts as an anticorrosive film in the marine environment.
文摘The influence of welding defects on MIC (microbiologically influenced corrosion) was studied.The open circuit potential (OCP) was measured during MIC test. It was found that OCP shifted to a higher level when the system was inoculated with bacteria and it decreased dramatically when MIC started. Among a series of welding defects golden heat tint was found the most susceptible to MIC. The tubercles over pitting were observed with SEM. Some elements inside of the tubercles were analysed with EDXA. Microbiological analysis of a corroded and a non-corroded sample revealed no significant difference between them with the exception of the number of the manganeseoxidising bacteria.
基金Project supported by the National Natural Science Foundation of China (50571003)
文摘The corrosion behaviors of Al-6Mg-Zr and Al-6Mg-Zr-Sc in the sulfate-reducing bacteria (SRB) solution in anaerobic environment were studied using electrochemical, microbiological, and surface analysis methods. It was found that the oxide film was more compact owing to the addition of Sc resulting in the open circuit potential shifting by about 100mV positively. On the other hand, it was seen that the pitting sensitivity of Al-6Mg-Zr-Sc alloy in SRB solution decreased and its microbiologically influenced corrosion resistance was improved. Pitting corrosion occurring on the surface of the two alloys under the comprehensive action of the metabolism of SRB was observed by SEM. It was obtained by EDS that the corrosion degree increased with time and corrosion was furthered by deposition of the product.
基金supported by the Shandong Provincial Doctoral Foundation of China(No.2006BS04021)National Natural Science Foundation of China(No.50672090)Technological Generalship Project of Qingdao(No.05-2-JC-76)
文摘The corrosion behavior of carbon steel in the medium of marine microorganisms was investigated by electrochemical impedance spectra, polarization curves, and so on. Experimental results showed that the corrosion potential of carbon steel moved in a negative direction in the unpurified marine microorganism solution, and the polarization style of the cathodic process did not change. The electrochemical impedance spectra showed that the impedance value of the electrode decreased in the medium with bacteria, which indicated that the existence of microorganism could accelerate the corrosion progress of carbon steel.
文摘The corrosion behaviors of Al-6Mg-Zr and Al-6Mg-Zr-Sc in sulfate-reducing bacteria(SRB) solution in the anaerobic environment were studied by electrochemical, microbiology and surface analysis methods. It is found that the oxide film is more compact resulting in the open circuit potential shifting about 100 mV positively due to the addition of Sc. On the other hand, it is demonstrated that pitting sensitivity of Al-6Mg-Zr-Sc alloy in the SRB solution is decreased and its microbiologically influenced corrosion resistance is improved.
基金funding by the National Natural Science Foundation of China (Nos.51501203 and U1660118)the National Basic Research Program of China (973 Program Project,No.2014CB643300)+1 种基金the National Environmental Corrosion Platform (NECP)T.U.is sponsored by a postdoctoral fellowship from The Scientific and Technological Research Council of Turkey (TUBITAK-2219)
文摘Sulfate reducing bacteria(SRB) are often the culprits of microbiologically influenced corrosion(MIC) in anoxic environments because sulfate is a ubiquitous oxidant. MIC of carbon steel caused by SRB is the most intensively investigated topic in MIC because of its practical importance. It is also because biogenic sulfides complicate mechanistic SRB MIC studies, making SRB MIC of carbon steel is a long-lasting topic that has generated considerable confusions. It is expedient to think that biogenic H_2S secreted by SRB acidifies the broth because it is an acid gas. However, this is not true because endogenous H_2S gets its H^+ from organic carbon oxidation and the fluid itself in the first place rather than an external source. Many people believe that biogenic H_2S is responsible for SRB MIC of carbon steel. However, in recent years,well designed mechanistic studies provided evidence that contradicts this misconception. Experimental data have shown that cathodic electron harvest by an SRB biofilm from elemental iron via extracellular electron transfer(EET) for energy production by SRB is the primary cause. It has been demonstrated that when a mature SRB biofilm is subjected to carbon source starvation, it switches to elemental iron as an electron source and becomes more corrosive. It is anticipated that manipulations of EET related genes will provide genetic-level evidence to support the biocathode theory in the future. This kind of new advances will likely lead to new gene probes or transcriptomics tools for detecting corrosive SRB strains that possess high EET capabilities.
基金supported by Science Foundation of China University of Petroleum,Beijing(Nos.2462017YJRC038 and 2462018BJC005)supported by the National Natural Science Foundation of China(Grant U1660118)+1 种基金the National Basic Research Program of China(973 Program,No.2014CB643300)the National Environmental Corrosion Platform(NECP)
文摘Microbiologically influenced corrosion (MIC) is a major cause of corrosion damages, facility failures, and financial losses, making MIC an important research topic. Due to complex microbiological activities and a lack of deep understanding of the interactions between biofilms and metal surfaces, MIC occurrences and mechanisms are difficult to predict and interpret. Many theories and mechanisms have been pro- posed to explain MIC. In this review, the mechanisms of MIC are discussed using hioenergetics, microbial respiration types, and biofilm extracellular electron transfer (EET). Two main MIC types, namely EET-MIC and metabolite MIC (M-ME), are discussed. This brief review provides a state of the art insight into MIC mechanisms and it helps the diagnosis and prediction of occurrences of MIC under anaerobic conditions in the oil and gas industry.
基金supported financially by the National Key R&D Program of China (No. 2016YFB0300604)the National Natural Science Foundation of China (Nos. 51575510 and 51771221)
文摘The TiSiN-Cu nanocomposite coating was deposited on F690 steel substrate by arc ion plating. The structure and composition, tribocorrosion behavior and anti-microbiologically influenced corrosion(MIC)properties of TiSiN-Cu coating were investigated. The results show that the TiSiN-Cu coating has unique nanocomposite structures. The results of tribocorrosion show that the potential and current change of F690 steel and TiSiN-Cu coatings tend to be opposite. The reason is that the F690 steel is non-passivated metal and the TiSiN-Cu coating has passivation phenomenon. The TiSiN-Cu coating possesses excellent tribocorrosion resistance. Cu ion released from TiSiN-Cu coating can effectively inhibit the corrosion caused by SRB.
基金supportedfinancially by the National Natural Science Foundation of China(No.U1660118)the National Basic Research Program of China(No.2014CB643300)the National Environmental Corrosion Platform(NECP)
文摘Microbiologically influenced corrosion(MIC) is a big threat to the strength and safety of many metallic materials used in different environments throughout the world. The metabolites and bioactivity of the microorganisms cause severe deterioration on the metals. In this study, MIC of pure titanium(Ti) was studied in the presence of a highly corrosive aerobic marine bacterium Pseudomonas aeruginosa. The results obtained from electrochemical test showed that Ti was corrosion resistant in the abiotic culture medium after 14 d, while the increased corrosion current density(i_(corr)) obtained from polarization curves and the decreased charge transfer resistance(R_(ct)) from electrochemical impedance spectroscopy(EIS)indicated the accelerated corrosion of Ti caused by P. aeruginosa biofilm. For further confirmation of the above results, the surface of Ti was investigated using scanning electron microscopy(SEM), confocal laser scanning microscopy(CLSM) and X-ray photoelectron spectroscopy(XPS). According to the XPS results, TiO_2 was formed in both abiotic and biotic conditions, while unstable oxide Ti_2O_3 was detected in the presence of P. aeruginosa, leading to the defects in the passive film and localized corrosion. Pitting corrosion was investigated with the help of CLSM, and the largest pit depth found on Ti surface immersed in P. aeruginosa was 1.2 μm. Ti was not immune to MIC caused by P. aeruginosa.
基金financially supported by the National Natural Science Foundation of China(Nos.51501203 and U1660118)Shenzhen Science and Technology Research Funding(No.JCYJ20160608153641020)+1 种基金the National Basic Research Program of China(No.2014CB643300)the National Environmental Corrosion Platform(NECP)
文摘An antibacterial 2205-Cu duplex stainless steel (DSS) was shown to inhibit the formation and growth of corrosive marine biofilms by direct contact with copper-rich phases and the release of Cu^2+ ions from the 2205-Cu DSS surface. In this work, the microbiologically influenced corrosion (MIC) resistance of 2205- Cu DS5 in the presence of the corrosive marine bacterium Pseudornonos aeruginosa was investigated. The addition of copper improved the mechanical properties such as the yield strength, the tensile strength and the hardness of 2205 DSS. Electrochemical test results from linear polarization resistance (LPR), electrochemical impedance spectroscopy (EI5) and critical pitting temperature (CPT) measurements showed that 2205-Cu DSS possessed a larger polarization resistance (Rp), charge transfer resistance (Rct) and CPT values, indicating the excellent MIC resistance of2205-Cu DSS against the corrosive P. aeruginosa biofilm. The live]dead staining results and the SEM images of biofilm confirmed the strong antibacterial ability of 2205-Cu DSS. The largest pit depth of 2205-Cu DSS was considerably smaller than that of 2205 DSS after 14d in the presence ofP. aeruginosa (2.2 μm vs 12.5 μm). 2205-Cu DSS possessed a superior MIC resistance to regular 2205 DSS in the presence of aerobic P. aeruginosa.
基金supported financially by the National Natural Science Foundation of China(Nos.U1660118 and 51871050)the National Environmental Corrosion Platform(NECP)of Chinathe Fundamental Research Funds for the Central Universities of Ministry of Education of China(No.N180205021).
文摘Algae are reported to be corrosive,while little is known about the role of the algae associated bacteria in the corrosion process.In the present study,Halomonas titanicae was isolated from a culture of an alga strain,Spirulina platensis,and identified through 16 S rRNA gene analysis.Corrosion behavior of 304L stainless steel(SS)coupons in the presence and absence of H.titanicae was characterized by using electrochemical measurements and surface analysis.The results showed that H.titanicae significantly accelerated the corrosion rate and decreased the pitting potential of 304L SS in the biotic medium.After removal of the corrosion products and biofilms,severe pitting corrosion caused by H.titanicae was observed.The largest pit depth after 14 d reached 6.6μm,which was 5.5 times higher than that of the sterile control(1.2μm).This is the first report revealing that an alga associated bacterium can induce microbiologically influenced corrosion(MIC),and a further concern is raised that whether algae play a role in the MIC process.
基金supported by China Postdoctoral Science Foundation (Grant Nos. 2019T120610 and 2018M640655)Open Fund of Shandong Key Laboratory of Corrosion Science (Grant No. KLCS201903)National Natural Science Foundation of China (Grant Nos. 51572249 and U1806223)。
文摘The microbiologically influenced corrosion(MIC) mechanisms of copper by Pseudomonas aeruginosa as a typical strain of nitrate reducing bacteria(NRB) was investigated in this lab study.Cu was immersed in deoxygenated LB-NO3 seawater inoculated with P.aeruginosa and incubated for 2 weeks.Results showed that this NRB caused pitting and uniform corrosion.The maximum pit depths after 7 d and 14 d in125 mL anaerobic vials with 50 mL broth were 5.1 μm and 9.1 μm,accompanied by specific weight losses of 1.3 mg/cm2(7 d) and 1.7 mg/cm2(14 d),respectively.Electrochemical measurements corroborated weight loss and pit depth data trends.Experimental results indicated that extracellular electron transfer for nitrate reduction was the main MIC mechanism and ammonia secreted by P.aeruginosa could also play a role in the overall Cu corrosion process.
基金the Beijing Nova Program(No.Z171100001117076)the National Natural Science Foundation of China(Nos.51871026,51771029)the National Environmental Corrosion Platform。
文摘The corrosion behavior of 304 stainless steel(SS)in the presence of aerobic halophilic archaea Natronorubrum tibetense was investigated.After 14 days of immersion,no obvious pitting pit was observed on the SS surface in the sterile medium.By contrast,the SS exhibited serious pitting corrosion with the largest pit depth of 5.0μm in the inoculated medium after 14 days.The results of electrochemical tests showed that the barrier property of the passive film decreased faster in the inoculated medium.The X-ray photoelectron spectroscopy results indicated that the detrimental Fe2+and Cr6+increased in the passive film under the influence of archaea N.tibetense,which resulted in the accelerated deterioration of passive film and promoted the pitting corrosion.Combined with the energy starvation tests,the microbiologically influenced corrosion mechanism of 304 SS caused by halophilic archaea N.tibetense was discussed finally.
文摘The electrochemical characteristics of 1Cr18Ni9Ti in sulphate-reducing bacteria (SRB) solutions and the biofilm of SRB on the surface of the 1Cr18Ni9Ti electrode were studied by electrochemical, microbiological, and surface analysis methods. Electrochemical impedance spectroscopy (EIS) of 1Cr18Ni9Ti was measured in the solutions with and without SRB at the culture time of 2, 4, 8 d, respectively. The measurement used two test methods, the nonimmersion electrode method and the immersion electrode method. It was found that the polarization resistance (Rp) of 1Cr18Ni9Ti in the solutions without SRB is the greatest for each test method. When using the nonimmersion electrode method, Rp shifts negatively at first and then positively, and the time constant is only one. Although using the immersion electrode method, the Rp shifts positively at first and then negatively, and the time constant also changes when the biofilm forms. The biofilm observed through SEM is with pores. It was demonstrated that SRB has accelerated corrosion action on 1Cr18Ni9Ti. The protection effect of the biofilm on the electrode depends on the compact degree of the film.
基金financially supported by the High Technology Research and Development Program of China(No.2015AA034301)the National Natural Science Foundation of China(Grant Nos.51304041 and U1660118)Fundamental Research Funds for the Central Universities(Grant No.N150204007)
文摘S32654 super austenitic stainless steel(SASS) is widely used in highly corrosive environments. However,its microbiologically influenced corrosion(MIC) behavior has not been reported yet. In this study, the corrosion behavior of S32654 SASS caused by a corrosive marine bacterium Pseudomonas aeruginosa was investigated using electrochemical measurements and surface analysis techniques. It was found that P. aeruginosa biofilm accelerated the corrosion rate of S325654 SASS, which was demonstrated by a negative shift of the open circuit potential(EOCP), a decrease of polarization resistance and an increase of corrosion current density in the culture medium. The largest pit depth of the coupons exposed in the P.aeruginosa broth for 14 days was 2.83 m, much deeper than that of the control(1.33 m) in the abiotic culture medium. It was likely that the P. aeruginosa biofilm catalyzed the formation of CrO_3, which was detrimental to the passive film, resulting in MIC pitting corrosion.
基金financially supported by PTT Exploration and Production, ThailandChinese Society for Corrosion and Protection。
文摘In the oil and gas industry,microbiologically influenced corrosion(MIC) is a major threat to hydrotest,a procedure which is required to certify whether a pipeline can be commissioned.Seawater is frequently used as a hydrotest fluid.In this bio film prevention lab study,an oilfield biofilm consortium was grown in an enriched artificial seawater anaerobically at 37℃ for 60 days.The combination of 100 ppm(w/w) 2,2-dibromo-3-nitrilopropionamide(DBNPA)+100 nM(180 ppb) Peptide A(a biofilm dispersal agent) led to extra SRB(sulfate reducing bacteria),APB(acid producing bacteria) and GHB(general heterotrophic bacteria) sessile cell count reductions of 0.9-log,0.8-log and 0.6-log,respectively,compared with the outcome obtained by using 100 ppm DBNPA only.The Peptide Aenhancement also led to extra reductions of 44 % in weight loss,43 % in maximum pit depth,and 54 % in corrosion current density.
基金financial support from Saudi Aramcothe China Scholarship Council for studying in the USA+2 种基金supports by the National Key Research and Development Program of China (No. 2018YFF0215002)Key Laboratory of Materials Chemistry for Energy Conversion and Storage Ministry of Education (2018)The Foundation of Hubei Key Laboratory of Materials Chemistry and Service Failure (2017)。
文摘Tetrakis hydroxymethyl phosphonium sulfate(THPS) was enhanced by a 14-mer Peptide A, with its core12-mer sequence mimicking part of Equinatoxin II protein, in the mitigation of sulfate reducing Desulfovibrio ferrophilus MIC(microbiologically influenced corrosion) of X80 carbon steel. Results proved that50 ppm(w/w) THPS was sufficient to mitigate the D. ferrophilus biofilm, and its very agressive MIC(19.7mg/cm^(2) in 7 days or 1.31 mm/a), but not 20 ppm THPS. To achieve effective mitigation at a low dosage of THPS, biofilm-dispersing Peptide A was added to 20 ppm THPS in the culture medium. Sessile cell counts were reduced by 2-log and 4-log after enhancement by 10 ppb and 100 ppb Peptide A, respectively. Enhancement efficiency(further reduction in corrosion rate) reached 69% for 10 ppb Peptide A and 83% for100 ppb Peptide A compared with 20 ppm THPS alone treatment, indicating that Peptide A was a good biocide enhancer for THPS.