By use of the high-resolution spectral data obtained with THEMIS on 2002 September 5, the spectra and characteristics of five well-observed microflares have been analyzed. Our results indicate that some of them are lo...By use of the high-resolution spectral data obtained with THEMIS on 2002 September 5, the spectra and characteristics of five well-observed microflares have been analyzed. Our results indicate that some of them are located near the longitudinal magnetic polarity inversion lines. All the microflares are accompanied by mass motions. The most obvious characteristic of the Hα microflare spectra is the emission at the center of both Hα and CaⅡ 8542A lines. For the first time both thermal and non-thermal semi-empirical atmospheric models for the conspicuous and faint microflares are computed. In computing the non-thermal models, we assume that the electron beam resulting from magnetic reconnection is produced in the chromosphere, because it requires lower energies for the injected particles. It is found there is obvious heating in the low chromosphere. The temperature enhancement is about 1000-2200 K in the thermal models. If the non-thermal effects are included, then the required temperature increase can be reduced by 100-150 K. These imply that the Hα microflares can probably be produced by magnetic reconnection in the solar lower atmosphere. The radiative and kinetic energies of the Hα microflares are estimated and the total energy is found to be 10^27 - 4× 10^28 erg.展开更多
High-resolution Stokes spectral data of Hα, Ca Ⅱ 8542A, and Fe 16302.5A lines for a two-ribbon microflare (TRMF) were simultaneously obtained by the THEMIS telescope on 2002 September 5. We derive the intensity, v...High-resolution Stokes spectral data of Hα, Ca Ⅱ 8542A, and Fe 16302.5A lines for a two-ribbon microflare (TRMF) were simultaneously obtained by the THEMIS telescope on 2002 September 5. We derive the intensity, velocity, and longitudinal magnetic field maps. The hard X-ray emission observed by RHESSI provides evidence of nonthermal particle acceleration in the TRMF. Using Ha and Ca Ⅱ 8542A line profiles and a non-LTE calculation, we obtain semi-empirical atmospheric models for the two brightest kernels of the TRME Our result indicates that the temperature enhancement in the chromosphere is more than 2500 K. The kinetic and radiative energies at the kernels are also estimated, resulting in an estimate of the total energy of the TRMF of about 2.4×10^29 erg. Observations indicate that the TRMF results from the low coronal magnetic reconnection following the eruption of a small fila- ment. However, the local temperature "bump" in the chromosphere presents a puzzle for such a standard flare model. A possible solution to this is discussed.展开更多
A long-lived sunspot group (AR9604) on the south hemisphere that lasted five solar rotations and produced some strong bursts is analyzed. The focus is on its evolving features. Its whole life was successfully maintain...A long-lived sunspot group (AR9604) on the south hemisphere that lasted five solar rotations and produced some strong bursts is analyzed. The focus is on its evolving features. Its whole life was successfully maintained by four Emerging Flux Regions (EFRs). Apart from the one that lasted only a short time and did not produce any bursts, the other three EFRs have the following common features: (1) A positive writhe of magnetic flux tubes and a twist of the field lines of the same sign, indicating kink instability. (2) A clockwise rotation and a high tilt because the writhe was right-handed. (3) A compact 'island δ' structure of the sunspot group indicating concentrated kink instability. Since magnetic reconnection easily occurs at the kinked point of a very kink-unstable flux tube, these features should be the inducement of the strong bursts.展开更多
A very rare type of solar radio microflares occurred during 0645~0720 UT on Jan. 5, 1994 is introduced in this paper. The radio and optical characteristics of the solar microflares of a short decimetric wave (1 42 GH...A very rare type of solar radio microflares occurred during 0645~0720 UT on Jan. 5, 1994 is introduced in this paper. The radio and optical characteristics of the solar microflares of a short decimetric wave (1 42 GHz) are discussed. This event contains 53 radio fast fine structures (FFS), that is, 53 intermittently periodic impulse trains with similar morphologies superimposed on the continuum radiation background. The intensities of the pulses lie within 150~200 s. f. u. and the durations (half power width) are of the order of 10~50 milliseconds (ms). 18 out of 53 FFSs are doublepeak-separating structures. In this paper we try to discuss the generation mechanism qualitatively and find it is in consistence with the model of current loop explosive coalescence (Sakai and De Jager, 1989a, 1989b): the explosive coalescence of the multiple of cross magnetic flux loops causes the plasma disturbance and so rapidly transform the magnetic energy into the kinetic energy of electrons.展开更多
The five-minute oscillations inside sunspots appear to be the absorption of the solar p-mode. It is a potential tool to probe a sunspot's sub-structure. We studied the collective properties of five-minute oscillation...The five-minute oscillations inside sunspots appear to be the absorption of the solar p-mode. It is a potential tool to probe a sunspot's sub-structure. We studied the collective properties of five-minute oscillations in the power and phase distribution at the sunspot's umbra-penumbra boundary. The azimuthal distributions of the power and phase of five-minute oscillations enclosing a sunspot's umbra were obtained with images taken with the Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA). The azimuthal modes were quantified with periodogram analysis and justified with significance tests. The azimuthal nodal structures in an approximately ax- ially symmetric sunspot AR 11131 (2010 Dec 08) were investigated. Mode numbers ra = 2, 3, 4, 7, 10 were obtained in both 1700 A and 1600A bandpasses. The 1600A channel also revealed an extra mode at m = 9. In the upper atmosphere (304 A), fewer modes were detected at m = 3, 4, 7. The azimuthal modes in the sunspot's low atmo- sphere could be interpreted as high-order azimuthal MHD body modes. They were detected in the power and phase of the five-minute oscillations in sunspot AR 11131 with SDO/AIA data. Fewer modes were detected in the sunspot's upper atmosphere.展开更多
The wavelet transform method for high-quality time-frequency analysis is applied to sets of observations of relative sunspot numbers and stellar chromosphere fluxes of 10 Sun-like stars. Wavelet analysis of solar data...The wavelet transform method for high-quality time-frequency analysis is applied to sets of observations of relative sunspot numbers and stellar chromosphere fluxes of 10 Sun-like stars. Wavelet analysis of solar data shows that in a certain interval of time there are several cycles of activity with pe- riods of duration which vary considerably from each other: from quasi-biennial cycles to lO0-yr cycles. Cyclic activity was detected in almost all Sun-like stars that we examined, even those that previously were not considered as stars with cyclic activity according to analysis using a Scargle periodogram. The durations of solar and stellar cycles significantly change during the observation period.展开更多
A method combining the support vector machine (SVM) the K-Nearest Neighbors (KNN), labelled the SVM-KNN method, is used to construct a solar flare forecasting model. Based on a proven relationship between SVM and ...A method combining the support vector machine (SVM) the K-Nearest Neighbors (KNN), labelled the SVM-KNN method, is used to construct a solar flare forecasting model. Based on a proven relationship between SVM and KNN, the SVM-KNN method improves the SVM algorithm of classification by taking advantage of the KNN algorithm according to the distribution of test samples in a feature space. In our flare forecast study, sunspots and 10cm radio flux data observed during Solar Cycle 23 are taken as predictors, and whether an M class flare will occur for each active region within two days will be predicted. The SVM- KNN method is compared with the SVM and Neural networks-based method. The test results indicate that the rate of correct predictions from the SVM-KNN method is higher than that from the other two methods. This method shows promise as a practicable future forecasting model.展开更多
Using multi-wavelength data of Hinode, the rapid rotation of a sunspot in active region NOAA 10930 is studied in detail. We found extraordinary counterclockwise rotation of the sunspot with positive polarity before an...Using multi-wavelength data of Hinode, the rapid rotation of a sunspot in active region NOAA 10930 is studied in detail. We found extraordinary counterclockwise rotation of the sunspot with positive polarity before an X3.4 flare. From a series of vector magnetograms, it is found that magnetic force lines are highly sheared along the neutral line accompanying the sunspot rotation. Furthermore, it is also found that sheared loops and an inverse S-shaped magnetic loop in the corona formed gradually after the sunspot rotation. The X3.4 flare can be reasonably regarded as a result of this movement. A detailed analysis provides evidence that sunspot rotation leads to magnetic field lines twisting in the photosphere. The twist is then transported into the corona and triggers flares.展开更多
We give an extensive multi-wavelength analysis of an eruptive M1.0/1N class solar flare, which occurred in the active region NOAA 10044 on 2002 July 26. Our emphasis is on the relationship between magnetic shear and f...We give an extensive multi-wavelength analysis of an eruptive M1.0/1N class solar flare, which occurred in the active region NOAA 10044 on 2002 July 26. Our emphasis is on the relationship between magnetic shear and flare shear. Flare shear is defined as the angle formed between the line connecting the centroids of the two ribbons of the flare and the line perpendicular to the magnetic neutral line. The magnetic shear is computed from vector magnetograms observed at Big Bear Solar Observatory (BBSO), while the flare shear is computed from Transition Region and Coronal Explorer (TRACE) 1700A images. By a detailed comparison, we find that; 1) The magnetic shear and the flare shear of this event are basically consistent, as judged from the directions of the transverse magnetic field and the line connecting the two ribbons' centroids. 2) During the period of the enhancement of magnetic shear, flare shear had a fast increase followed by a fluctuated decrease. 3) When the magnetic shear stopped its enhancement, the fluctuated decreasing behavior of the flare shear became very smooth. 4) Hard X-ray (HXR) spikes are well correlated with the unshearing peaks on the time profile of the rate of change of the flare shear. We give a discussion of the above phenomena.展开更多
We investigate the wavelet transform of yearly mean relative sunspot number series from 1700 to 2002. The curve of the global wavelet power spectrum peaks at 11-yr, 53-yr and 101-yr periods. The evolution of the ampli...We investigate the wavelet transform of yearly mean relative sunspot number series from 1700 to 2002. The curve of the global wavelet power spectrum peaks at 11-yr, 53-yr and 101-yr periods. The evolution of the amplitudes of the three periods is studied. The results show that around 1750 and 1800, the amplitude of the 53-yr period was much higher than that of the the 11-yr period, that the ca. 53-yr period was apparent only for the interval from 1725 to 1850, and was very low after 1850, that around 1750, 1800 and 1900, the amplitude of the 101-yr period was higher than that of the 11-yr period and that, from 1940 to 2000, the 11-yr period greatly dominates over the other two periods.展开更多
We examine the nonlinear dynamical properties of the monthly smoothed group sunspot number Rg and find that the solar activity underlying the time series of Rg is globally governed by a low-dimensional chaotic attract...We examine the nonlinear dynamical properties of the monthly smoothed group sunspot number Rg and find that the solar activity underlying the time series of Rg is globally governed by a low-dimensional chaotic attractor. This finding is consistent with the nonlinear study results of the monthly Wolf sunspot numbers. We estimate the maximal Lyaponuv exponent (MLE) for the Rg series to be positive and to equal approximately 0.0187 ± 0.0023 (month^- 1). Thus, the Lyaponuv time or predictability time of the chaotic motion is obtained to be about 4.46 ± 0.5 years, which is slightly different with the predictability time obtained from Rz. However, they both indicate that solar activity forecast should be done only for a short to medium term due to the intrinsic complexity of the time behavior concerned.展开更多
A multi-model integration method is proposed to develop a multi-source and heterogeneous model for short-term solar flare prediction. Different prediction models are constructed on the basis of extracted predictors fr...A multi-model integration method is proposed to develop a multi-source and heterogeneous model for short-term solar flare prediction. Different prediction models are constructed on the basis of extracted predictors from a pool of observation databases. The outputs of the base models are normal- ized first because these established models extract predictors from many data resources using different prediction methods. Then weighted integration of the base models is used to develop a multi-model integrated model (MIM). The weight set that single models assign is optimized by a genetic algorithm. Seven base models and data from Solar and Heliospheric Observatory/Michelson Doppler Imager lon- gitudinal magnetograms are used to construct the MIM, and then its performance is evaluated by cross validation. Experimental results showed that the MIM outperforms any individual model in nearly every data group, and the richer the diversity of the base models, the better the performance of the MIM. Thus, integrating more diversified models, such as an expert system, a statistical model and a physical model, will greatly improve the performance of the MIM.展开更多
We report results from a multi-wavelength study of the 3B/X1.2 tworibbon disk flare (S15E44), which was well observed by both ground-based and space-borne instruments. Two pairs of conjugate kernels - K1 and K4, and...We report results from a multi-wavelength study of the 3B/X1.2 tworibbon disk flare (S15E44), which was well observed by both ground-based and space-borne instruments. Two pairs of conjugate kernels - K1 and K4, and K2 and K3 - in the Ha images are identified. These kernels are linked by two different systems of EUV loops. K1 and K4 correspond to the two 17 GHz and 34 GHz microwave sources observed by the Nobeyama Radioheliograph (NoRH), while K2 and K3 have no corresponding microwave sources. Optical spectroscopic observations suggest that all the four kernels are possible precipitating sites of non-thermal electrons. Thus the energy of electron deposited in K2 and K3 should be less than 100keV. Two-dimensional distributions of the full widths at half maximum (FWHM) of the Ha profiles and the line-of-sight (LOS) velocities derived from the Ca n 8542 A profiles indicate that the largest FWHM and LOS velocity tends to be located near the outer edges of Hα kernels, which is consistent with the scenario of current two-ribbon flare models and previous results. When non-thermal electron bombardment is present, the observed Hα and Ca II 8542 A profiles are similar to previous observational and theoretical results, while the He I 10830 A profiles are different from the theoretical ones. This puts some constraints on future theoretical calculation of the He I 10830 A line.展开更多
To acquire Stokes profiles from observations of a simple sunspot with the Video Vector Magnetograph at Huairou Solar Observing Station (HSOS), we scanned the FeI λ5324.19 A line over the wavelength interval from 150m...To acquire Stokes profiles from observations of a simple sunspot with the Video Vector Magnetograph at Huairou Solar Observing Station (HSOS), we scanned the FeI λ5324.19 A line over the wavelength interval from 150mA redward of the line center to 150mA blueward, in steps of 10mA. With the technique of analytic inversion of Stokes profiles via nonlinear least-squares, we present the calibration coefficients for the HSOS vector magnetic magnetogram. We obtained the theoretical calibration error with linear expressions derived from the Unno-Becker equation under weak-field approximation.展开更多
We present a large complex radio burst and its associated fast time structures observed on 2001 April 10 in the frequency range of 0.65-7.6 GHz. The NoRH radio image observation shows very complex radio source structu...We present a large complex radio burst and its associated fast time structures observed on 2001 April 10 in the frequency range of 0.65-7.6 GHz. The NoRH radio image observation shows very complex radio source structures which include preexisting, newly emerging, submerging/cancelling polarities and a bipolar, a tripolar (a 'bipolar + remote unipolar'), and a quadrupolar structure. This suggests that the radio burst is generated from a very complicated loop structure. According to the spectral and image observations, we assume that the beginning of this flare was caused by a single bipolar loop configuration with a ‘Y-type' re- connection structure. A composite of radio continuum and fast time structures is contained in this flare. The various fast radio emission phenomena include normal and reverse drifting type Ⅲ bursts, and slowly drifting and no-drift structures. The tripolar configurations may form a double-loop with a 'three-legged' struc- ture, which is an important source of the various types of fast time structures. The two-loop reconnection model can lead simultaneously to electron acceleration and corona heating. We have also analyzed the behaviors of coronal magnetic polarities and the emission processes of different types radio emission qualitatively. Interactions of a bipolar or multi-polar loop are consistent with our observational results. Our observations favor the magnetic reconnection configurations of the ‘inverted Y-type' (bipolar) and the ‘three-legged' structures (tripolar or quadrupo- lar).展开更多
Polarimetry plays an important role in the measurement of solar magnetic fields. We devel- oped a high-sensitivity and high-accuracy polarimeter (HHP) based on nematic liquid crystal variable retarders (LCVRs), wh...Polarimetry plays an important role in the measurement of solar magnetic fields. We devel- oped a high-sensitivity and high-accuracy polarimeter (HHP) based on nematic liquid crystal variable retarders (LCVRs), which has a compact setup and no mechanical moving parts. The system design and calibration methods are discussed in detail. The azimuth error of the transmission axis of the polarizer as well as the fast axes of the two LCVRs and the quarter-wave plate were determined using dedicated procedures. Linearly and circularly polarized light were employed to evaluate the performance of the HHP. The experimental results indicate that a polarimetric sensitivity of better than 5.7 × 10-3 can be achieved by using a single short-exposure image, while an accuracy on the order of 10-5 can be reached by using a large number of short-exposure images. This makes the HHP a high-performance system that can be used with a ground-based solar telescope for high-precision solar magnetic field investigations.展开更多
Data analysis of sunspot oscillations based on a 6-hr SDO run of an observation showed that low frequency (0.2 〈ω 〈 1 mHz) oscillations are locally similar to three and five minute oscillations. The oscillations ...Data analysis of sunspot oscillations based on a 6-hr SDO run of an observation showed that low frequency (0.2 〈ω 〈 1 mHz) oscillations are locally similar to three and five minute oscillations. The oscillations in the sunspot are concentrated in cells of a few arcsec, each of which has its own oscillation spectrum. The analysis of two scenarios for sunspot oscillations leads to a conclusion that local sunspot oscillations occur due to a subphotospheric resonator for slow MHD waves. Empirical models of a sunspot atmosphere and the theory of slow waves in thin magnetic flux tubes are applied to modeling the subphotospheric resonator. The spectrum of local oscillations consists of a great number of lines. This kind of spectrum can occur only if the subphotospheric resonator is a magnetic tube with a rather weak magnetic field. Magnetic tubes of this sort are umbral dots that appear due to the convective tongues in monolithic sunspots. The interrelation of local oscillations with umbral dots and wavefronts of traveling waves in sunspots is discussed.展开更多
Ever since the magnetohydrodynamic (MHD) method for extrapolation of the solar coronal magnetic field was first developed to study the dynamic evolution of twisted magnetic flux tubes, it has proven to be efficient ...Ever since the magnetohydrodynamic (MHD) method for extrapolation of the solar coronal magnetic field was first developed to study the dynamic evolution of twisted magnetic flux tubes, it has proven to be efficient in the reconstruction of the solar coronal magnetic field. A recent example is the so-called data-driven simu- lation method (DDSM), which has been demonstrated to be valid by an application to model analytic solutions such as a force-free equilibrium given by Low and Lou. We use DDSM for the observed magnetograms to reconstruct the magnetic field above an active region. To avoid an unnecessary sensitivity to boundary conditions, we use a classical total variation diminishing Lax-Friedrichs formulation to iteratively compute the full MHD equations. In order to incorporate a magnetogram consistently and sta- bly, the bottom boundary conditions are derived from the characteristic method. In our simulation, we change the tangential fields continually from an initial potential field to the vector magnetogram. In the relaxation, the initial potential field is changed to a nonlinear magnetic field until the MHD equilibrium state is reached. Such a stable equilibrium is expected to be able to represent the solar atmosphere at a specified time. By inputting the magnetograms before and after the X3.4 flare that occurred on 2006 December 13, we find a topological change after comparing the magnetic field before and after the flare. Some discussions are given regarding the change of magnetic con- figuration and current distribution. Furthermore, we compare the reconstructed field line configuration with the coronal loop observations by XRT onboard Hinode. The comparison shows a relatively good correlation.展开更多
A tilt-correction adaptive optical system installed on the 430 mm Solar Telescope of Nanjing University has been put in operation. It consists of a tip-tilt mirror, a correlation tracker and an imaging CCD camera. An ...A tilt-correction adaptive optical system installed on the 430 mm Solar Telescope of Nanjing University has been put in operation. It consists of a tip-tilt mirror, a correlation tracker and an imaging CCD camera. An absolute difference algorithm is used for detecting image motion in the correlation tracker. The sampling frequency of the system is 419 Hz. We give a description of the system's configuration, an analysis of its performance and a report of our observational results. A residual jitter of 0.14 arcsec has been achieved. The error rejection bandwidth of the system can be adjusted in the range 5-28 Hz according to the beacon size and the strength of atmospheric turbulence.展开更多
基金Supported by the National Natural Science Foundation of China.
文摘By use of the high-resolution spectral data obtained with THEMIS on 2002 September 5, the spectra and characteristics of five well-observed microflares have been analyzed. Our results indicate that some of them are located near the longitudinal magnetic polarity inversion lines. All the microflares are accompanied by mass motions. The most obvious characteristic of the Hα microflare spectra is the emission at the center of both Hα and CaⅡ 8542A lines. For the first time both thermal and non-thermal semi-empirical atmospheric models for the conspicuous and faint microflares are computed. In computing the non-thermal models, we assume that the electron beam resulting from magnetic reconnection is produced in the chromosphere, because it requires lower energies for the injected particles. It is found there is obvious heating in the low chromosphere. The temperature enhancement is about 1000-2200 K in the thermal models. If the non-thermal effects are included, then the required temperature increase can be reduced by 100-150 K. These imply that the Hα microflares can probably be produced by magnetic reconnection in the solar lower atmosphere. The radiative and kinetic energies of the Hα microflares are estimated and the total energy is found to be 10^27 - 4× 10^28 erg.
基金Supported by the National Natural Science Foundation of China(NSFC) (Grant Nos. 10221001, 10878002, 10403003, 10620150099,10610099, 10933003 and 10673004)a grant form the 973 project 2006CB806302
文摘High-resolution Stokes spectral data of Hα, Ca Ⅱ 8542A, and Fe 16302.5A lines for a two-ribbon microflare (TRMF) were simultaneously obtained by the THEMIS telescope on 2002 September 5. We derive the intensity, velocity, and longitudinal magnetic field maps. The hard X-ray emission observed by RHESSI provides evidence of nonthermal particle acceleration in the TRMF. Using Ha and Ca Ⅱ 8542A line profiles and a non-LTE calculation, we obtain semi-empirical atmospheric models for the two brightest kernels of the TRME Our result indicates that the temperature enhancement in the chromosphere is more than 2500 K. The kinetic and radiative energies at the kernels are also estimated, resulting in an estimate of the total energy of the TRMF of about 2.4×10^29 erg. Observations indicate that the TRMF results from the low coronal magnetic reconnection following the eruption of a small fila- ment. However, the local temperature "bump" in the chromosphere presents a puzzle for such a standard flare model. A possible solution to this is discussed.
文摘A long-lived sunspot group (AR9604) on the south hemisphere that lasted five solar rotations and produced some strong bursts is analyzed. The focus is on its evolving features. Its whole life was successfully maintained by four Emerging Flux Regions (EFRs). Apart from the one that lasted only a short time and did not produce any bursts, the other three EFRs have the following common features: (1) A positive writhe of magnetic flux tubes and a twist of the field lines of the same sign, indicating kink instability. (2) A clockwise rotation and a high tilt because the writhe was right-handed. (3) A compact 'island δ' structure of the sunspot group indicating concentrated kink instability. Since magnetic reconnection easily occurs at the kinked point of a very kink-unstable flux tube, these features should be the inducement of the strong bursts.
文摘A very rare type of solar radio microflares occurred during 0645~0720 UT on Jan. 5, 1994 is introduced in this paper. The radio and optical characteristics of the solar microflares of a short decimetric wave (1 42 GHz) are discussed. This event contains 53 radio fast fine structures (FFS), that is, 53 intermittently periodic impulse trains with similar morphologies superimposed on the continuum radiation background. The intensities of the pulses lie within 150~200 s. f. u. and the durations (half power width) are of the order of 10~50 milliseconds (ms). 18 out of 53 FFSs are doublepeak-separating structures. In this paper we try to discuss the generation mechanism qualitatively and find it is in consistence with the model of current loop explosive coalescence (Sakai and De Jager, 1989a, 1989b): the explosive coalescence of the multiple of cross magnetic flux loops causes the plasma disturbance and so rapidly transform the magnetic energy into the kinetic energy of electrons.
文摘The five-minute oscillations inside sunspots appear to be the absorption of the solar p-mode. It is a potential tool to probe a sunspot's sub-structure. We studied the collective properties of five-minute oscillations in the power and phase distribution at the sunspot's umbra-penumbra boundary. The azimuthal distributions of the power and phase of five-minute oscillations enclosing a sunspot's umbra were obtained with images taken with the Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA). The azimuthal modes were quantified with periodogram analysis and justified with significance tests. The azimuthal nodal structures in an approximately ax- ially symmetric sunspot AR 11131 (2010 Dec 08) were investigated. Mode numbers ra = 2, 3, 4, 7, 10 were obtained in both 1700 A and 1600A bandpasses. The 1600A channel also revealed an extra mode at m = 9. In the upper atmosphere (304 A), fewer modes were detected at m = 3, 4, 7. The azimuthal modes in the sunspot's low atmo- sphere could be interpreted as high-order azimuthal MHD body modes. They were detected in the power and phase of the five-minute oscillations in sunspot AR 11131 with SDO/AIA data. Fewer modes were detected in the sunspot's upper atmosphere.
文摘The wavelet transform method for high-quality time-frequency analysis is applied to sets of observations of relative sunspot numbers and stellar chromosphere fluxes of 10 Sun-like stars. Wavelet analysis of solar data shows that in a certain interval of time there are several cycles of activity with pe- riods of duration which vary considerably from each other: from quasi-biennial cycles to lO0-yr cycles. Cyclic activity was detected in almost all Sun-like stars that we examined, even those that previously were not considered as stars with cyclic activity according to analysis using a Scargle periodogram. The durations of solar and stellar cycles significantly change during the observation period.
基金the National Natural Science Foundation of China
文摘A method combining the support vector machine (SVM) the K-Nearest Neighbors (KNN), labelled the SVM-KNN method, is used to construct a solar flare forecasting model. Based on a proven relationship between SVM and KNN, the SVM-KNN method improves the SVM algorithm of classification by taking advantage of the KNN algorithm according to the distribution of test samples in a feature space. In our flare forecast study, sunspots and 10cm radio flux data observed during Solar Cycle 23 are taken as predictors, and whether an M class flare will occur for each active region within two days will be predicted. The SVM- KNN method is compared with the SVM and Neural networks-based method. The test results indicate that the rate of correct predictions from the SVM-KNN method is higher than that from the other two methods. This method shows promise as a practicable future forecasting model.
基金supported by the National Science Foundation of China (NSFC) undergrant numbers 10673031 and 40636031the National Basic Research Program of China 973 undergrant number G2006CB806301.
文摘Using multi-wavelength data of Hinode, the rapid rotation of a sunspot in active region NOAA 10930 is studied in detail. We found extraordinary counterclockwise rotation of the sunspot with positive polarity before an X3.4 flare. From a series of vector magnetograms, it is found that magnetic force lines are highly sheared along the neutral line accompanying the sunspot rotation. Furthermore, it is also found that sheared loops and an inverse S-shaped magnetic loop in the corona formed gradually after the sunspot rotation. The X3.4 flare can be reasonably regarded as a result of this movement. A detailed analysis provides evidence that sunspot rotation leads to magnetic field lines twisting in the photosphere. The twist is then transported into the corona and triggers flares.
基金Supported by the National Natural Science Foundation of China.
文摘We give an extensive multi-wavelength analysis of an eruptive M1.0/1N class solar flare, which occurred in the active region NOAA 10044 on 2002 July 26. Our emphasis is on the relationship between magnetic shear and flare shear. Flare shear is defined as the angle formed between the line connecting the centroids of the two ribbons of the flare and the line perpendicular to the magnetic neutral line. The magnetic shear is computed from vector magnetograms observed at Big Bear Solar Observatory (BBSO), while the flare shear is computed from Transition Region and Coronal Explorer (TRACE) 1700A images. By a detailed comparison, we find that; 1) The magnetic shear and the flare shear of this event are basically consistent, as judged from the directions of the transverse magnetic field and the line connecting the two ribbons' centroids. 2) During the period of the enhancement of magnetic shear, flare shear had a fast increase followed by a fluctuated decrease. 3) When the magnetic shear stopped its enhancement, the fluctuated decreasing behavior of the flare shear became very smooth. 4) Hard X-ray (HXR) spikes are well correlated with the unshearing peaks on the time profile of the rate of change of the flare shear. We give a discussion of the above phenomena.
基金Supported by the National Natural Science Foundation of China
文摘We investigate the wavelet transform of yearly mean relative sunspot number series from 1700 to 2002. The curve of the global wavelet power spectrum peaks at 11-yr, 53-yr and 101-yr periods. The evolution of the amplitudes of the three periods is studied. The results show that around 1750 and 1800, the amplitude of the 53-yr period was much higher than that of the the 11-yr period, that the ca. 53-yr period was apparent only for the interval from 1725 to 1850, and was very low after 1850, that around 1750, 1800 and 1900, the amplitude of the 101-yr period was higher than that of the 11-yr period and that, from 1940 to 2000, the 11-yr period greatly dominates over the other two periods.
基金the National Natural Science Foundation of China
文摘We examine the nonlinear dynamical properties of the monthly smoothed group sunspot number Rg and find that the solar activity underlying the time series of Rg is globally governed by a low-dimensional chaotic attractor. This finding is consistent with the nonlinear study results of the monthly Wolf sunspot numbers. We estimate the maximal Lyaponuv exponent (MLE) for the Rg series to be positive and to equal approximately 0.0187 ± 0.0023 (month^- 1). Thus, the Lyaponuv time or predictability time of the chaotic motion is obtained to be about 4.46 ± 0.5 years, which is slightly different with the predictability time obtained from Rz. However, they both indicate that solar activity forecast should be done only for a short to medium term due to the intrinsic complexity of the time behavior concerned.
基金supported by the National Natural Science Foundation of China(Grant No.11078010)SOHO is a project of international cooperation between the European Space Agency(ESA) and NASA
文摘A multi-model integration method is proposed to develop a multi-source and heterogeneous model for short-term solar flare prediction. Different prediction models are constructed on the basis of extracted predictors from a pool of observation databases. The outputs of the base models are normal- ized first because these established models extract predictors from many data resources using different prediction methods. Then weighted integration of the base models is used to develop a multi-model integrated model (MIM). The weight set that single models assign is optimized by a genetic algorithm. Seven base models and data from Solar and Heliospheric Observatory/Michelson Doppler Imager lon- gitudinal magnetograms are used to construct the MIM, and then its performance is evaluated by cross validation. Experimental results showed that the MIM outperforms any individual model in nearly every data group, and the richer the diversity of the base models, the better the performance of the MIM. Thus, integrating more diversified models, such as an expert system, a statistical model and a physical model, will greatly improve the performance of the MIM.
基金Supported by the National Natural Science Foundation of China.
文摘We report results from a multi-wavelength study of the 3B/X1.2 tworibbon disk flare (S15E44), which was well observed by both ground-based and space-borne instruments. Two pairs of conjugate kernels - K1 and K4, and K2 and K3 - in the Ha images are identified. These kernels are linked by two different systems of EUV loops. K1 and K4 correspond to the two 17 GHz and 34 GHz microwave sources observed by the Nobeyama Radioheliograph (NoRH), while K2 and K3 have no corresponding microwave sources. Optical spectroscopic observations suggest that all the four kernels are possible precipitating sites of non-thermal electrons. Thus the energy of electron deposited in K2 and K3 should be less than 100keV. Two-dimensional distributions of the full widths at half maximum (FWHM) of the Ha profiles and the line-of-sight (LOS) velocities derived from the Ca n 8542 A profiles indicate that the largest FWHM and LOS velocity tends to be located near the outer edges of Hα kernels, which is consistent with the scenario of current two-ribbon flare models and previous results. When non-thermal electron bombardment is present, the observed Hα and Ca II 8542 A profiles are similar to previous observational and theoretical results, while the He I 10830 A profiles are different from the theoretical ones. This puts some constraints on future theoretical calculation of the He I 10830 A line.
基金Support by the National Natural Science Foundation of China.
文摘To acquire Stokes profiles from observations of a simple sunspot with the Video Vector Magnetograph at Huairou Solar Observing Station (HSOS), we scanned the FeI λ5324.19 A line over the wavelength interval from 150mA redward of the line center to 150mA blueward, in steps of 10mA. With the technique of analytic inversion of Stokes profiles via nonlinear least-squares, we present the calibration coefficients for the HSOS vector magnetic magnetogram. We obtained the theoretical calibration error with linear expressions derived from the Unno-Becker equation under weak-field approximation.
基金Supported by the National Natural Science Foundation of China.
文摘We present a large complex radio burst and its associated fast time structures observed on 2001 April 10 in the frequency range of 0.65-7.6 GHz. The NoRH radio image observation shows very complex radio source structures which include preexisting, newly emerging, submerging/cancelling polarities and a bipolar, a tripolar (a 'bipolar + remote unipolar'), and a quadrupolar structure. This suggests that the radio burst is generated from a very complicated loop structure. According to the spectral and image observations, we assume that the beginning of this flare was caused by a single bipolar loop configuration with a ‘Y-type' re- connection structure. A composite of radio continuum and fast time structures is contained in this flare. The various fast radio emission phenomena include normal and reverse drifting type Ⅲ bursts, and slowly drifting and no-drift structures. The tripolar configurations may form a double-loop with a 'three-legged' struc- ture, which is an important source of the various types of fast time structures. The two-loop reconnection model can lead simultaneously to electron acceleration and corona heating. We have also analyzed the behaviors of coronal magnetic polarities and the emission processes of different types radio emission qualitatively. Interactions of a bipolar or multi-polar loop are consistent with our observational results. Our observations favor the magnetic reconnection configurations of the ‘inverted Y-type' (bipolar) and the ‘three-legged' structures (tripolar or quadrupo- lar).
基金funded by the National Natural Science Foundation of China(NSFC,Grant Nos.11661161011,11433007,11220101001,11328302,11373005 and 11303064)the Opening Project of Key Laboratory of Astronomical Optics&Technology,Nanjing Institute of Astronomical Optics&Technology,Chinese Academy of Sciences(CASKLAOT-KF201606)+4 种基金the“Strategic Priority Research Program”of the Chinese Academy of Sciences(Grant No.XDA04075200)the special fund for astronomy of CAS(2015–2016)the special funding for Young Researcher of Nanjing Institute of Astronomical Optics&Technologythe International Partnership Program of the Chinese Academy of Sciences(Grant No.114A32KYSB20160018)the Mt.Cuba Astronomical Foundation
文摘Polarimetry plays an important role in the measurement of solar magnetic fields. We devel- oped a high-sensitivity and high-accuracy polarimeter (HHP) based on nematic liquid crystal variable retarders (LCVRs), which has a compact setup and no mechanical moving parts. The system design and calibration methods are discussed in detail. The azimuth error of the transmission axis of the polarizer as well as the fast axes of the two LCVRs and the quarter-wave plate were determined using dedicated procedures. Linearly and circularly polarized light were employed to evaluate the performance of the HHP. The experimental results indicate that a polarimetric sensitivity of better than 5.7 × 10-3 can be achieved by using a single short-exposure image, while an accuracy on the order of 10-5 can be reached by using a large number of short-exposure images. This makes the HHP a high-performance system that can be used with a ground-based solar telescope for high-precision solar magnetic field investigations.
基金partially supported by the Ministry of Education and Science of the Russian Federationthe Siberian Branch of the Russian Academy of Sciences (Project II.16.3.2)+2 种基金the Program of basic research of the RAS Presidium No.28Goszadanie 2018 (No. 007-00163-18-00 of 12.01.2018)supported by the Russian Foundation for Basic Research (RFBR)(No. 17-52-80064 BRICS-a)
文摘Data analysis of sunspot oscillations based on a 6-hr SDO run of an observation showed that low frequency (0.2 〈ω 〈 1 mHz) oscillations are locally similar to three and five minute oscillations. The oscillations in the sunspot are concentrated in cells of a few arcsec, each of which has its own oscillation spectrum. The analysis of two scenarios for sunspot oscillations leads to a conclusion that local sunspot oscillations occur due to a subphotospheric resonator for slow MHD waves. Empirical models of a sunspot atmosphere and the theory of slow waves in thin magnetic flux tubes are applied to modeling the subphotospheric resonator. The spectrum of local oscillations consists of a great number of lines. This kind of spectrum can occur only if the subphotospheric resonator is a magnetic tube with a rather weak magnetic field. Magnetic tubes of this sort are umbral dots that appear due to the convective tongues in monolithic sunspots. The interrelation of local oscillations with umbral dots and wavefronts of traveling waves in sunspots is discussed.
基金supported by the National Basic Research Program of China(973 Program,No.2011CB811406)the China Meteorological Administration through grant GYHY201106011the National Natural Science Foundation of China(Grant Nos.10921303, 10733020,10803011,10973020 and 40890161)
文摘Ever since the magnetohydrodynamic (MHD) method for extrapolation of the solar coronal magnetic field was first developed to study the dynamic evolution of twisted magnetic flux tubes, it has proven to be efficient in the reconstruction of the solar coronal magnetic field. A recent example is the so-called data-driven simu- lation method (DDSM), which has been demonstrated to be valid by an application to model analytic solutions such as a force-free equilibrium given by Low and Lou. We use DDSM for the observed magnetograms to reconstruct the magnetic field above an active region. To avoid an unnecessary sensitivity to boundary conditions, we use a classical total variation diminishing Lax-Friedrichs formulation to iteratively compute the full MHD equations. In order to incorporate a magnetogram consistently and sta- bly, the bottom boundary conditions are derived from the characteristic method. In our simulation, we change the tangential fields continually from an initial potential field to the vector magnetogram. In the relaxation, the initial potential field is changed to a nonlinear magnetic field until the MHD equilibrium state is reached. Such a stable equilibrium is expected to be able to represent the solar atmosphere at a specified time. By inputting the magnetograms before and after the X3.4 flare that occurred on 2006 December 13, we find a topological change after comparing the magnetic field before and after the flare. Some discussions are given regarding the change of magnetic con- figuration and current distribution. Furthermore, we compare the reconstructed field line configuration with the coronal loop observations by XRT onboard Hinode. The comparison shows a relatively good correlation.
基金Supported by the National Natural Science Foundation of China
文摘A tilt-correction adaptive optical system installed on the 430 mm Solar Telescope of Nanjing University has been put in operation. It consists of a tip-tilt mirror, a correlation tracker and an imaging CCD camera. An absolute difference algorithm is used for detecting image motion in the correlation tracker. The sampling frequency of the system is 419 Hz. We give a description of the system's configuration, an analysis of its performance and a report of our observational results. A residual jitter of 0.14 arcsec has been achieved. The error rejection bandwidth of the system can be adjusted in the range 5-28 Hz according to the beacon size and the strength of atmospheric turbulence.