A finite element method based on the cohesive zone model was used to study the micromachining process of nanosized silicon-carbide-particle(SiCp) reinforced aluminum matrix composites. As a hierarchical multiscale sim...A finite element method based on the cohesive zone model was used to study the micromachining process of nanosized silicon-carbide-particle(SiCp) reinforced aluminum matrix composites. As a hierarchical multiscale simulation method, the parameters for the cohesive zone model were obtained from the stress-displacement curves of the molecular dynamics simulation. The model considers the random properties of the siliconcarbide-particle distribution and the interface of bonding between the silicon carbide particles and the matrix.The machining mechanics was analyzed according to the chip morphology, stress distribution, cutting temperature, and cutting force. The simulation results revealed that the random distribution of nanosized SiCp causes non-uniform interaction between the tool and the reinforcement particles. This deformation mechanics leads to inhomogeneous stress distribution and irregular cutting force variation.展开更多
This paper presents a probe-based force-controlled nanoindentation method to fabricate ordered micro/nanostructures.Both the experimental and finite element simulation approaches are employed to investigate the influe...This paper presents a probe-based force-controlled nanoindentation method to fabricate ordered micro/nanostructures.Both the experimental and finite element simulation approaches are employed to investigate the influence of the interval between the adjacent indentations and the rotation angle of the probe on the formed micro/nanostructures.The non-contacting part between indenter and the sample material and the height of the material pile-up are two competing factors to determine the depth relationship between the adjacent indentations.For the one array indentations,nanostructures with good depth consistency and periodicity can be formed after the depth of the indentation becoming stable,and the variation of the rotation angle results in the large difference between the morphology of the formed nanostructures at the bottom of the one array indentation.In addition,for the indentation arrays,the nanostructures with good consistency and periodicity of the shape and depth can be generated with the spacing greater than 1μm.Finally,Raman tests are also carried out based on the obtained ordered micro/nanostructures with Rhodamine probe molecule.The indentation arrays with a smaller spacing lead to better the enhancement effect of the substrate,which has the potential applications in the fields of biological or chemical molecular detection.展开更多
Electrochemical micromachining (EMM) technology for fabricating micro structures is presented in this article. By applying ultra short pulses, dissolution of a workpiece can be restricted to the region very close to...Electrochemical micromachining (EMM) technology for fabricating micro structures is presented in this article. By applying ultra short pulses, dissolution of a workpiece can be restricted to the region very close to the electrode. First, an EMM system for meeting the requirements of the EMM process is established. Second, sets of experiments is carried out to investigate the influence of some of the predominant electrochemical process parameters such as electrical parameters, feed rate, electrode geometry features and electrolyte composition on machining quality, especially the influences of pulse on time on shape precision and working end shape of electrode on machined surface quality. Finally, after the preliminary experiments, a complex microstructure with good shape precision and surface quality is successfully obtained.展开更多
A modified buffered-HF solution with NH4 F : glycerol : HF(4 : 2 : 1)is studied. With the implementation of a heating and agitating mechanism, this method is applied in a sacrificial layer etching scheme that in...A modified buffered-HF solution with NH4 F : glycerol : HF(4 : 2 : 1)is studied. With the implementation of a heating and agitating mechanism, this method is applied in a sacrificial layer etching scheme that increases the selectivity between silicon dioxide and aluminum. The etching rates of SiO2 and Al as a function of solution temperature are determined. Moreover,the effects of adding glycerol and agitating the etchant are examined and compared with this method. Finally, this method is tested on an actual device, and its efficiency is scrutinized.展开更多
The application of surface textures has been employed to improve the tribological performance of various mechanical components. Various techniques have been used for the application of surface textures such as micro-d...The application of surface textures has been employed to improve the tribological performance of various mechanical components. Various techniques have been used for the application of surface textures such as micro-dimple arrays, but the fabrication of such arrays on cylindrical inner surfaces remains a challenge. In this study, a dry-film photoresist is used as a mask during through-mask electrochemical micromachining to successfully prepare micro-dimple arrays with dimples 94 lm in diameter and 22.7 lm deep on cylindrical inner surfaces, with a machining time of 9 s and an applied voltage of 8 V. The versatility of this method is demonstrated, as are its potential low cost and high efficiency. It is also shown that for a fixed dimple depth, a smaller dimple diameter can be obtained using a combination of lower current density and longer machining time in a passivating sodium nitrate electrolyte.展开更多
We report on second harmonic generation(SHG) in on-chip high-Q(>105) lithium niobate(Li Nb O3, LN) microresonators fabricated by femtosecond laser micromachining. We examine the efficiency of SHG with either a cont...We report on second harmonic generation(SHG) in on-chip high-Q(>105) lithium niobate(Li Nb O3, LN) microresonators fabricated by femtosecond laser micromachining. We examine the efficiency of SHG with either a continuous-wave(CW) or an ultrashort pulsed pump laser. The normalized conversion efficiencies of SHG obtained with the CW and pulsed pump lasers are measured to be 1.35×10?5 m W?1 and 2.30×10?6 m W?1, respectively.展开更多
The importance of integrated quantum photonics in the telecom band is based on the possibility of interfacing with the optical network infrastructure that was developed for classical communications.In this framework,f...The importance of integrated quantum photonics in the telecom band is based on the possibility of interfacing with the optical network infrastructure that was developed for classical communications.In this framework,femtosecond laser-written integrated photonic circuits,which have already been assessed for use in quantum information experiments in the 800-nm wavelength range,have great potential.In fact,these circuits,being written in glass,can be perfectly mode-matched at telecom wavelength to the in/out coupling fibers,which is a key requirement for a low-loss processing node in future quantum optical networks.In addition,for several applications,quantum photonic devices must be dynamically reconfigurable.Here,we experimentally demonstrate the high performance of femtosecond laser-written photonic circuits for use in quantum experiments in the telecom band,and we demonstrate the use of thermal shifters,which were also fabricated using the same femtosecond laser,to accurately tune such circuits.State-of-the-art manipulation of single-and two-photon states is demonstrated,with fringe visibilities greater than 95%.The results of this work open the way to the realization of reconfigurable quantum photonic circuits based on this technological platform.展开更多
A high friction coefficient and a low wear rate of contacted surfaces are essential elements to friction pairs between the stator and the rotor in ultrasonic motors. It has been shown that surface textures have a sign...A high friction coefficient and a low wear rate of contacted surfaces are essential elements to friction pairs between the stator and the rotor in ultrasonic motors. It has been shown that surface textures have a significant effect on improving the tribological performance of friction pairs.In this paper, microgroove arrays are introduced to the stator surface for improving the tribological performance of friction pairs between the stator and the rotor in ultrasonic motors. Microgrooves were fabricated on a phosphor bronze surface by through-mask electrochemical micromachining(TMEMM). Parameters, namely, the electrolyte inlet pressure, applied voltage, pulse duty cycle,and frequency, were varied to investigate their influences on the dimensions and morphology of the microgrooves. Results showed that the width and depth of the microgrooves were strongly affected by the applied voltage and frequency, while the morphology of the microgrooves was dependent on the electrolyte inlet pressure and the pulse duty cycle. Compared with a smooth surface, the friction coefficient increased from 0.245 to 0.334 and less abrasion was obtained when a surface was textured with microgrooves of which the width and depth were 185.6 and 57.6 lm,respectively. Microgroove arrays might play an important role in enhancing the performance of ultrasonic motors.展开更多
Besides the physical and chemical machining methods, a biological machining method has been presented. The experimental results show that machining of pure iron, pure copper and constantan by a special bacterium, Thio...Besides the physical and chemical machining methods, a biological machining method has been presented. The experimental results show that machining of pure iron, pure copper and constantan by a special bacterium, Thiobacillus ferrooxidans , was possible. A micro gear and grooves on pure copper piece were bio machined. The depth of the groove so bio machined was directly dependent on the machining time. The biomachining mechanism has been analyzed from the electron transport chain (ETC) in the T. ferrooxidans membrane, and its developing direction has been also discussed.展开更多
Surface texturing is a widely accepted approach for friction reduction between mechanical components. Through-mask electrochemical mieromachining is a simple and reliable process for metal surface texturing in which m...Surface texturing is a widely accepted approach for friction reduction between mechanical components. Through-mask electrochemical mieromachining is a simple and reliable process for metal surface texturing in which mass transport conditions have profound influence on final machined quality. An ultrasonic stirrer is usually adopted for mass transfer enhancement. However, understanding of the effects of ultrasonic stirring on mass transfer is limited, and is far from sufficient for developing guidelines for its practical application. In this work, the influences of ultrasonic stirring parameters on mass transfer have been investigated numerically and experimentally. With the numerical method, periodic pressure change in the electrolyte over time has been obtained, showing that ultrasonic stirring results in drastic transient pressure change in electrolyte fluid fields. Parameters related to ultrasonic frequency, vibration amplitude, and the depth of anode surface immersed in the electrolyte solution influence pressure amplitude. Validation experiments have been conducted and etched surface profile and morphology characterized, which show that the experimental observations are in agreement with numerical predictions. With the optimized mass transfer, well-defined micro-pits array of 30 gm and a smooth etched surface on tin-bronze substrate in large scale have been demonstrated.展开更多
Aiming at fabrication of complex microstructures and micro-patterns, a kind of femtosecond laser micromachining technology based on the BMP image edge tracing was proposed. We introduced the general principle of this ...Aiming at fabrication of complex microstructures and micro-patterns, a kind of femtosecond laser micromachining technology based on the BMP image edge tracing was proposed. We introduced the general principle of this technology and discussed the implementation of the machining paths extraction, optimization, tracing and the feedback of the machining procession in detail. On the basis of this technology, control software for femtosecond laser micromachining was developed. Furthermore, we have accomplished the fabrication of complicated two-dimensional (2D) micro-patterns on a copper thin film. The results indicate that this technology can be used for digital control micromachining of complex patterns or microstructures at micron and submicron scales by femtosecond laser.展开更多
Invar alloy consisting of 64% iron and 36% nickel has been widely used for the production of shadow masks for organic light emitting diodes(OLEDs) because of its low thermal expansion coefficient(1.86 × 10^-6c...Invar alloy consisting of 64% iron and 36% nickel has been widely used for the production of shadow masks for organic light emitting diodes(OLEDs) because of its low thermal expansion coefficient(1.86 × 10^-6cm/°C).To fabricate micro-hole arrays on 30 lm invar alloy film,through-mask electrochemical micromachining(TMEMM) was developed and combined with a portion of the photolithography etching process.For precise hole shapes,patterned photoresist(PR) film was applied as an insulating mask.To investigate the relationship between the current density and the material removal rate,the principle of the electrochemical machining was studied with a focus on the equation.The finite element method(FEM) was used to verify the influence of each parameter on the current density on the invar alloy film surface.The parameters considered were the thickness of the PR mask,inter-electrode gap(IEG),and electrolyte concentration.Design of experiments(DOE) was used to figure out the contribution of each parameter.A simulation was conducted with varying parameters to figure out their relationships with the current density.Optimization was conducted to select the suitable conditions.An experiment was carried out to verify the simulation results.It was possible to fabricate micro-hole arrays on invar alloy film using TMEMM,which is a promising method that can be applied to fabrications of OLEDs shadow masks.展开更多
The radial ultrasonic rolling electrochemical micromachining(RUR-EMM)combined rolling electrochemical micromachining(R-EMM)and ultrasonic vibration was studied in this paper.The fundamental understanding of the machin...The radial ultrasonic rolling electrochemical micromachining(RUR-EMM)combined rolling electrochemical micromachining(R-EMM)and ultrasonic vibration was studied in this paper.The fundamental understanding of the machining process especially the interaction between multiphysics in the interelectrode gap(IEG)was investigated and discussed by the finite element method.The multiphysics coupling model including flow field model,Joule heating model,material dissolution model and vibration model was built.3D multiphysics simulation based on micro dimples process in RUR-EMM and R-EMM was proposed.Simulation results showed that the electrolyte flowed into and out IEG periodically,gas bubbles were easy to squeeze out and the gas void fraction deceased about 16%to 54%,the maximum current density increased by 1.36 times in RUR-EMM than in R-EMM in one vibration period of time.And application of the ultrasonic vibration increased the electrolyte temperature about 1.3–4.4%in IEG.Verification experiments of the micro dimple process denoted better corrosion consistency of array dimples in RUR-EMM,there was no island at the micro dimple bottom which always formed in R-EMM,and an aggregated deviation of less than 8.7%for the micro dimple depth and 4%for the material removal amount between theory and experiment was obtained.展开更多
By introducing the mechanical motion into the confined etchant layer technique(CELT), we have developed a promising ultraprecision machining method, termed as electrochemical mechanical micromachining(ECMM), for produ...By introducing the mechanical motion into the confined etchant layer technique(CELT), we have developed a promising ultraprecision machining method, termed as electrochemical mechanical micromachining(ECMM), for producing both regular and irregular three dimensional(3 D) microstructures. It was found that there was a dramatic coupling effect between the confined etching process and the slow-rate mechanical motion because of the concentration distribution of electrogenerated etchant caused by the latter. In this article, the coupling effect was investigated systemically by comparing the etchant diffusion, etching depths and profiles in the non-confined and confined machining modes. A two-dimensional(2 D) numerical simulation model was proposed to analyze the diffusion variations during the ECMM process, which is well verified by the machining experiments. The results showed that, in the confined machining mode, both the machining resolution and the perpendicularity tolerance of side faces were improved effectively. Furthermore, the theoretical modeling and numerical simulations were proved valuable to optimize the technical parameters of the ECMM process.展开更多
Surface geometrical features and their function- ality depend on the manufacturing process which is employed for fabrication of surface structures. Maskless electrochemical micromachining (EMM) is used to generate v...Surface geometrical features and their function- ality depend on the manufacturing process which is employed for fabrication of surface structures. Maskless electrochemical micromachining (EMM) is used to generate various surface structures for diminishing and controlling friction and wear to increase the lifetime, reliability, and efficiency of mechanical systems. This paper presents a method for the generation of structured surfaces on stainless steel (SS-304) surfaces by using maskless EMM. The micropatterned tool is composed of 800 μm diameter circular holes in a 5 × 5 matrix form. The indigenously developed EMM set up consists of an EMM cell, electrical power supply system, and a controlled vertical cross-flow electrolyte circulation arrangement to control the influence of process parameters during the generation of the micro features of structured surfaces. The single structured cathode tool is used for the mass production of structured surfaces with a short fabrication time in the industrial context by avoiding the use of an individual masking process for each workpiece. The process has been characterized in terms of the effects of predominant process parameters such as machining voltage, electrolyte concentration, duty ratio, pulsed frequency, and machining time on the machined surface characteristics such as current efficiency, machining accuracy, and depth of the circular pattern on the stainless steel surfaces. A mathematical model is also developed to determine the theoretical depth of the dimple pattern and correlate the theoretical depths with actual depths as obtained by experimentation. Moreover, an effort has been made to study the structuringcharacteristics on the basis of micrographs obtained duringthe EMM.展开更多
Optical fibers are typically used in telecommunications services for data transmission,where the use of fiber tags is essential to distinguish between the different transmission fibers or channels and thus ensure the ...Optical fibers are typically used in telecommunications services for data transmission,where the use of fiber tags is essential to distinguish between the different transmission fibers or channels and thus ensure the working functionality of the communication system.Traditional physical entity marking methods for fiber labeling are bulky,easily confused,and,most importantly,the label information can be accessed easily by all potential users.This work proposes an encrypted optical fiber tag based on an encoded fiber Bragg grating(FBG)array that is fabricated using a point-by-point femtosecond laser pulse chain inscription method.Gratings with different resonant wavelengths and reflectivities are realized by adjusting the grating period and the refractive index modulations.It is demonstrated that a binary data sequence carried by a fiber tag can be inscribed into the fiber core in the form of an FBG array,and the tag data can be encrypted through appropriate design of the spatial distributions of the FBGs with various reflection wavelengths and reflectivities.The proposed fiber tag technology can be used for applications in port identification,encrypted data storage,and transmission in fiber networks.展开更多
Perovskite materials have become a popular research topic because of their unique optical and electrical properties,that enable extensive applications in information storage,lasers,anti-counterfeiting,and planar lense...Perovskite materials have become a popular research topic because of their unique optical and electrical properties,that enable extensive applications in information storage,lasers,anti-counterfeiting,and planar lenses.However,the success of the application depends on accomplishing high-precision and high-quality perovskite patterning technology.Numerous methods have been proposed for perovskite production,including,a femtosecond laser with an ultrashort pulse width and ultrahigh peak power with unique advantages such as high precision and efficiency,nonlinearity,and excellent material adaptability in perovskite material processing.Furthermore,femtosecond lasers can induce precipitation of perovskite inside glass/crystals,which markedly enhances the stability of perovskite materials and promotes their application and development in various fields.This review introduces perovskite precipitation and processing via femtosecond lasers.The methods involved and advantages of femtosecond-laser-induced perovskite precipitation and patterning are systematically summarized.The review also provides an outlook for further optimization and improvement of femtosecond laser preparation and processing methods for perovskites,which may offer significant support for future research and applications of perovskite materials.展开更多
The mode-division multiplexing technique combined with a few-mode erbium-doped fiber amplifier(FM-EDFA)demonstrates significant potential for solving the capacity limitation of standard single-mode fiber(SSMF)transmis...The mode-division multiplexing technique combined with a few-mode erbium-doped fiber amplifier(FM-EDFA)demonstrates significant potential for solving the capacity limitation of standard single-mode fiber(SSMF)transmission systems.However,the differential mode gain(DMG)arising in the FM-EDFA fundamentally limits its transmission capacity and length.Herein,an innovative DMG equalization strategy using femtosecond laser micromachining to adjust the refractive index(RI)is presented.Variable mode-dependent attenuations can be achieved according to the DMG profile of the FM-EDFA,enabling DMG equalization.To validate the proposed strategy,DMG equalization of the commonly used FM-EDFA configuration was investigated.Simulation results revealed that by optimizing both the length and RI modulation depth of the femtosecond laser-tailoring area,the maximum DMG(DMGmax)among the 3 linear-polarized(LP)mode-group was mitigated from 10 dB to 1.52 dB,whereas the average DMG(DMGave)over the C-band was reduced from 8.95 dB to 0.78 dB.Finally,a 2-LP mode-group DMG equalizer was experimentally demonstrated,resulting in a reduction of the DMGmax from 2.09 dB to 0.46 dB,and a reduction of DMGave over the C band from 1.64 dB to 0.26 dB,with only a 1.8 dB insertion loss.Moreover,a maximum range of variable DMG equalization was achieved with 5.4 dB,satisfying the requirements of the most commonly used 2-LP mode-group amplification scenarios.展开更多
A piezoresistive silicon accelerometer fabricated by a selective,self-stopping porous silicon (PS) etching method using an epitaxial layer for movable microstructures is described and analyzed.The technique is capable...A piezoresistive silicon accelerometer fabricated by a selective,self-stopping porous silicon (PS) etching method using an epitaxial layer for movable microstructures is described and analyzed.The technique is capable of constructing a microstructure precisely.PS is used as a sacrificial layer,and releasing holes are etched in the film.TMAH solution with additional Si powder and (NH_4)_2S_2O_8 is used to remove PS through the small releasing holes without eroding uncovered Al.The designed fabrication process is full compatible with standard CMOS process.展开更多
A novel into-plane rotating rnicromirror actuated by a hybrid electrostatic driving structure is presented. The hybrid driving structure is made up of a planar plate drive and a vertical comb drive. The device is fabr...A novel into-plane rotating rnicromirror actuated by a hybrid electrostatic driving structure is presented. The hybrid driving structure is made up of a planar plate drive and a vertical comb drive. The device is fabricated in SOI substrate by using a bulk-and-surface mixed silicon micromachining process. As demonstrated by experiment, the novel driving structure can actuate the mirror to achieve large-range continuous rotation as well as spontaneous 90°rotation induced by the pull-in effect. The continuous rotating range of the micromirror is increased to about 46° at an increased yielding voltage. The measured yielding voltages of the mirrors with torsional springs of 1 and 0.5μm in thickness are 390 - 410V and 140 - 160V, respectively. The optical insertion loss has also been measured to be --1.98dB when the mirror serves as an optical switch.展开更多
基金supported by the National Science Foundation of China for Young Scientists (Grant No.51505331)
文摘A finite element method based on the cohesive zone model was used to study the micromachining process of nanosized silicon-carbide-particle(SiCp) reinforced aluminum matrix composites. As a hierarchical multiscale simulation method, the parameters for the cohesive zone model were obtained from the stress-displacement curves of the molecular dynamics simulation. The model considers the random properties of the siliconcarbide-particle distribution and the interface of bonding between the silicon carbide particles and the matrix.The machining mechanics was analyzed according to the chip morphology, stress distribution, cutting temperature, and cutting force. The simulation results revealed that the random distribution of nanosized SiCp causes non-uniform interaction between the tool and the reinforcement particles. This deformation mechanics leads to inhomogeneous stress distribution and irregular cutting force variation.
基金National Natural Science Foundation of China(Grant Nos.52035004,51911530206,51905047)Heilongjiang Provincial Natural Science Foundation of China(Grant No.YQ2020E015)+1 种基金Self-Planned Task of State Key Laboratory of Robotics and System(HIT)(Grant No.SKLRS202001C)Young Elite Scientist Sponsorship Program by CAST(Grant No.YESS20200155).
文摘This paper presents a probe-based force-controlled nanoindentation method to fabricate ordered micro/nanostructures.Both the experimental and finite element simulation approaches are employed to investigate the influence of the interval between the adjacent indentations and the rotation angle of the probe on the formed micro/nanostructures.The non-contacting part between indenter and the sample material and the height of the material pile-up are two competing factors to determine the depth relationship between the adjacent indentations.For the one array indentations,nanostructures with good depth consistency and periodicity can be formed after the depth of the indentation becoming stable,and the variation of the rotation angle results in the large difference between the morphology of the formed nanostructures at the bottom of the one array indentation.In addition,for the indentation arrays,the nanostructures with good consistency and periodicity of the shape and depth can be generated with the spacing greater than 1μm.Finally,Raman tests are also carried out based on the obtained ordered micro/nanostructures with Rhodamine probe molecule.The indentation arrays with a smaller spacing lead to better the enhancement effect of the substrate,which has the potential applications in the fields of biological or chemical molecular detection.
基金National Natural Science Foundation of China (50635040)National High-tech Research and Development Program (2009AA04Z302)Jiangsu Provincial Natural Science Foundation (BK2008043)
文摘Electrochemical micromachining (EMM) technology for fabricating micro structures is presented in this article. By applying ultra short pulses, dissolution of a workpiece can be restricted to the region very close to the electrode. First, an EMM system for meeting the requirements of the EMM process is established. Second, sets of experiments is carried out to investigate the influence of some of the predominant electrochemical process parameters such as electrical parameters, feed rate, electrode geometry features and electrolyte composition on machining quality, especially the influences of pulse on time on shape precision and working end shape of electrode on machined surface quality. Finally, after the preliminary experiments, a complex microstructure with good shape precision and surface quality is successfully obtained.
基金the National Natural Science Foundation of China(No.50575001)~~
文摘A modified buffered-HF solution with NH4 F : glycerol : HF(4 : 2 : 1)is studied. With the implementation of a heating and agitating mechanism, this method is applied in a sacrificial layer etching scheme that increases the selectivity between silicon dioxide and aluminum. The etching rates of SiO2 and Al as a function of solution temperature are determined. Moreover,the effects of adding glycerol and agitating the etchant are examined and compared with this method. Finally, this method is tested on an actual device, and its efficiency is scrutinized.
基金supported by the Joint Funds of the National Natural Science Foundation of China and Guangdong Province(No.U1134003)
文摘The application of surface textures has been employed to improve the tribological performance of various mechanical components. Various techniques have been used for the application of surface textures such as micro-dimple arrays, but the fabrication of such arrays on cylindrical inner surfaces remains a challenge. In this study, a dry-film photoresist is used as a mask during through-mask electrochemical micromachining to successfully prepare micro-dimple arrays with dimples 94 lm in diameter and 22.7 lm deep on cylindrical inner surfaces, with a machining time of 9 s and an applied voltage of 8 V. The versatility of this method is demonstrated, as are its potential low cost and high efficiency. It is also shown that for a fixed dimple depth, a smaller dimple diameter can be obtained using a combination of lower current density and longer machining time in a passivating sodium nitrate electrolyte.
基金supported by the National Key Basic Research Program of China(Grant No.2014CB921300)the National Natural Science Foundation of China(Grant Nos.61275205,11174305 and 61205209)the Fundamental Research Funds for the Central Universities
文摘We report on second harmonic generation(SHG) in on-chip high-Q(>105) lithium niobate(Li Nb O3, LN) microresonators fabricated by femtosecond laser micromachining. We examine the efficiency of SHG with either a continuous-wave(CW) or an ultrashort pulsed pump laser. The normalized conversion efficiencies of SHG obtained with the CW and pulsed pump lasers are measured to be 1.35×10?5 m W?1 and 2.30×10?6 m W?1, respectively.
基金This work was supported by the ERC-Starting Grant 3D-QUEST(3DQuantum Integrated Optical Simulationgrant agreement no.307783,http://www.3dquest.eu)by the Marie Curie Initial Training Network PICQUE(Photonic Integrated Compound Quantum Encoding,grant agreement no.608062,funding Program:FP7-PEOPLE-2013-ITN,http://www.picque.eu).
文摘The importance of integrated quantum photonics in the telecom band is based on the possibility of interfacing with the optical network infrastructure that was developed for classical communications.In this framework,femtosecond laser-written integrated photonic circuits,which have already been assessed for use in quantum information experiments in the 800-nm wavelength range,have great potential.In fact,these circuits,being written in glass,can be perfectly mode-matched at telecom wavelength to the in/out coupling fibers,which is a key requirement for a low-loss processing node in future quantum optical networks.In addition,for several applications,quantum photonic devices must be dynamically reconfigurable.Here,we experimentally demonstrate the high performance of femtosecond laser-written photonic circuits for use in quantum experiments in the telecom band,and we demonstrate the use of thermal shifters,which were also fabricated using the same femtosecond laser,to accurately tune such circuits.State-of-the-art manipulation of single-and two-photon states is demonstrated,with fringe visibilities greater than 95%.The results of this work open the way to the realization of reconfigurable quantum photonic circuits based on this technological platform.
基金supported by the National Basic Research Program of China (973 Program,No.2015CB057502)the Fundamental Research Funds for the Central Universities (No.NZ2016106)
文摘A high friction coefficient and a low wear rate of contacted surfaces are essential elements to friction pairs between the stator and the rotor in ultrasonic motors. It has been shown that surface textures have a significant effect on improving the tribological performance of friction pairs.In this paper, microgroove arrays are introduced to the stator surface for improving the tribological performance of friction pairs between the stator and the rotor in ultrasonic motors. Microgrooves were fabricated on a phosphor bronze surface by through-mask electrochemical micromachining(TMEMM). Parameters, namely, the electrolyte inlet pressure, applied voltage, pulse duty cycle,and frequency, were varied to investigate their influences on the dimensions and morphology of the microgrooves. Results showed that the width and depth of the microgrooves were strongly affected by the applied voltage and frequency, while the morphology of the microgrooves was dependent on the electrolyte inlet pressure and the pulse duty cycle. Compared with a smooth surface, the friction coefficient increased from 0.245 to 0.334 and less abrasion was obtained when a surface was textured with microgrooves of which the width and depth were 185.6 and 57.6 lm,respectively. Microgroove arrays might play an important role in enhancing the performance of ultrasonic motors.
文摘Besides the physical and chemical machining methods, a biological machining method has been presented. The experimental results show that machining of pure iron, pure copper and constantan by a special bacterium, Thiobacillus ferrooxidans , was possible. A micro gear and grooves on pure copper piece were bio machined. The depth of the groove so bio machined was directly dependent on the machining time. The biomachining mechanism has been analyzed from the electron transport chain (ETC) in the T. ferrooxidans membrane, and its developing direction has been also discussed.
基金supported by the National Natural Science Foundation of China(Grant Nos.51375381,51775431,51675422&51575427)
文摘Surface texturing is a widely accepted approach for friction reduction between mechanical components. Through-mask electrochemical mieromachining is a simple and reliable process for metal surface texturing in which mass transport conditions have profound influence on final machined quality. An ultrasonic stirrer is usually adopted for mass transfer enhancement. However, understanding of the effects of ultrasonic stirring on mass transfer is limited, and is far from sufficient for developing guidelines for its practical application. In this work, the influences of ultrasonic stirring parameters on mass transfer have been investigated numerically and experimentally. With the numerical method, periodic pressure change in the electrolyte over time has been obtained, showing that ultrasonic stirring results in drastic transient pressure change in electrolyte fluid fields. Parameters related to ultrasonic frequency, vibration amplitude, and the depth of anode surface immersed in the electrolyte solution influence pressure amplitude. Validation experiments have been conducted and etched surface profile and morphology characterized, which show that the experimental observations are in agreement with numerical predictions. With the optimized mass transfer, well-defined micro-pits array of 30 gm and a smooth etched surface on tin-bronze substrate in large scale have been demonstrated.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60678011 and 10674107)
文摘Aiming at fabrication of complex microstructures and micro-patterns, a kind of femtosecond laser micromachining technology based on the BMP image edge tracing was proposed. We introduced the general principle of this technology and discussed the implementation of the machining paths extraction, optimization, tracing and the feedback of the machining procession in detail. On the basis of this technology, control software for femtosecond laser micromachining was developed. Furthermore, we have accomplished the fabrication of complicated two-dimensional (2D) micro-patterns on a copper thin film. The results indicate that this technology can be used for digital control micromachining of complex patterns or microstructures at micron and submicron scales by femtosecond laser.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIP)(No.2015R1A2A1A15054116)
文摘Invar alloy consisting of 64% iron and 36% nickel has been widely used for the production of shadow masks for organic light emitting diodes(OLEDs) because of its low thermal expansion coefficient(1.86 × 10^-6cm/°C).To fabricate micro-hole arrays on 30 lm invar alloy film,through-mask electrochemical micromachining(TMEMM) was developed and combined with a portion of the photolithography etching process.For precise hole shapes,patterned photoresist(PR) film was applied as an insulating mask.To investigate the relationship between the current density and the material removal rate,the principle of the electrochemical machining was studied with a focus on the equation.The finite element method(FEM) was used to verify the influence of each parameter on the current density on the invar alloy film surface.The parameters considered were the thickness of the PR mask,inter-electrode gap(IEG),and electrolyte concentration.Design of experiments(DOE) was used to figure out the contribution of each parameter.A simulation was conducted with varying parameters to figure out their relationships with the current density.Optimization was conducted to select the suitable conditions.An experiment was carried out to verify the simulation results.It was possible to fabricate micro-hole arrays on invar alloy film using TMEMM,which is a promising method that can be applied to fabrications of OLEDs shadow masks.
基金financial support of the projects from the National Natural Science Foundation of China(Nos.51975532 and 51475428)the Zhejiang Provincial Natural Science Foundation(No.LY19E050007)。
文摘The radial ultrasonic rolling electrochemical micromachining(RUR-EMM)combined rolling electrochemical micromachining(R-EMM)and ultrasonic vibration was studied in this paper.The fundamental understanding of the machining process especially the interaction between multiphysics in the interelectrode gap(IEG)was investigated and discussed by the finite element method.The multiphysics coupling model including flow field model,Joule heating model,material dissolution model and vibration model was built.3D multiphysics simulation based on micro dimples process in RUR-EMM and R-EMM was proposed.Simulation results showed that the electrolyte flowed into and out IEG periodically,gas bubbles were easy to squeeze out and the gas void fraction deceased about 16%to 54%,the maximum current density increased by 1.36 times in RUR-EMM than in R-EMM in one vibration period of time.And application of the ultrasonic vibration increased the electrolyte temperature about 1.3–4.4%in IEG.Verification experiments of the micro dimple process denoted better corrosion consistency of array dimples in RUR-EMM,there was no island at the micro dimple bottom which always formed in R-EMM,and an aggregated deviation of less than 8.7%for the micro dimple depth and 4%for the material removal amount between theory and experiment was obtained.
基金supported by the National Natural Science Foundation of China (21573054, 21327002, 91323303, 21621091)the Joint Funds Key Project of the National Natural Science Foundation of China (U1537214)+2 种基金the State Key Program of National Natural Science of China (51535003)Self-Planned Task (SKLRS201606B) of State Key Laboratory of Robotics and System (HIT)the Open Project of the State Key Laboratory for Manufacturing Systems Engineering (Xi'an Jiaotong University)
文摘By introducing the mechanical motion into the confined etchant layer technique(CELT), we have developed a promising ultraprecision machining method, termed as electrochemical mechanical micromachining(ECMM), for producing both regular and irregular three dimensional(3 D) microstructures. It was found that there was a dramatic coupling effect between the confined etching process and the slow-rate mechanical motion because of the concentration distribution of electrogenerated etchant caused by the latter. In this article, the coupling effect was investigated systemically by comparing the etchant diffusion, etching depths and profiles in the non-confined and confined machining modes. A two-dimensional(2 D) numerical simulation model was proposed to analyze the diffusion variations during the ECMM process, which is well verified by the machining experiments. The results showed that, in the confined machining mode, both the machining resolution and the perpendicularity tolerance of side faces were improved effectively. Furthermore, the theoretical modeling and numerical simulations were proved valuable to optimize the technical parameters of the ECMM process.
文摘Surface geometrical features and their function- ality depend on the manufacturing process which is employed for fabrication of surface structures. Maskless electrochemical micromachining (EMM) is used to generate various surface structures for diminishing and controlling friction and wear to increase the lifetime, reliability, and efficiency of mechanical systems. This paper presents a method for the generation of structured surfaces on stainless steel (SS-304) surfaces by using maskless EMM. The micropatterned tool is composed of 800 μm diameter circular holes in a 5 × 5 matrix form. The indigenously developed EMM set up consists of an EMM cell, electrical power supply system, and a controlled vertical cross-flow electrolyte circulation arrangement to control the influence of process parameters during the generation of the micro features of structured surfaces. The single structured cathode tool is used for the mass production of structured surfaces with a short fabrication time in the industrial context by avoiding the use of an individual masking process for each workpiece. The process has been characterized in terms of the effects of predominant process parameters such as machining voltage, electrolyte concentration, duty ratio, pulsed frequency, and machining time on the machined surface characteristics such as current efficiency, machining accuracy, and depth of the circular pattern on the stainless steel surfaces. A mathematical model is also developed to determine the theoretical depth of the dimple pattern and correlate the theoretical depths with actual depths as obtained by experimentation. Moreover, an effort has been made to study the structuringcharacteristics on the basis of micrographs obtained duringthe EMM.
基金supported by the National Natural Science Foundation of China(62122057,62075136,62105217,62205221,62205222)the Basic and Applied Basic Research Foundation of Guangdong Province(2022B1515120061)Shenzhen Science and Technology Program(Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing ZDSYS20220606100405013,RCYX20200714114524139,JCYJ20200109114001806)。
文摘Optical fibers are typically used in telecommunications services for data transmission,where the use of fiber tags is essential to distinguish between the different transmission fibers or channels and thus ensure the working functionality of the communication system.Traditional physical entity marking methods for fiber labeling are bulky,easily confused,and,most importantly,the label information can be accessed easily by all potential users.This work proposes an encrypted optical fiber tag based on an encoded fiber Bragg grating(FBG)array that is fabricated using a point-by-point femtosecond laser pulse chain inscription method.Gratings with different resonant wavelengths and reflectivities are realized by adjusting the grating period and the refractive index modulations.It is demonstrated that a binary data sequence carried by a fiber tag can be inscribed into the fiber core in the form of an FBG array,and the tag data can be encrypted through appropriate design of the spatial distributions of the FBGs with various reflection wavelengths and reflectivities.The proposed fiber tag technology can be used for applications in port identification,encrypted data storage,and transmission in fiber networks.
基金supported by the Guangdong Basic and Applied Basic Research Foundation(2022A1515011951,2023A1515012977,2024A1515010109)the National Natural Science Foundation of China(62375056)the Science and Technology Program of Guangzhou(202201010182).
文摘Perovskite materials have become a popular research topic because of their unique optical and electrical properties,that enable extensive applications in information storage,lasers,anti-counterfeiting,and planar lenses.However,the success of the application depends on accomplishing high-precision and high-quality perovskite patterning technology.Numerous methods have been proposed for perovskite production,including,a femtosecond laser with an ultrashort pulse width and ultrahigh peak power with unique advantages such as high precision and efficiency,nonlinearity,and excellent material adaptability in perovskite material processing.Furthermore,femtosecond lasers can induce precipitation of perovskite inside glass/crystals,which markedly enhances the stability of perovskite materials and promotes their application and development in various fields.This review introduces perovskite precipitation and processing via femtosecond lasers.The methods involved and advantages of femtosecond-laser-induced perovskite precipitation and patterning are systematically summarized.The review also provides an outlook for further optimization and improvement of femtosecond laser preparation and processing methods for perovskites,which may offer significant support for future research and applications of perovskite materials.
基金supported by the National Natural Science Foundation of China(62305071)China Postdoctoral Science Foundation(2023M740747)Guangdong Introducing Innovative and Entrepreneurial Teams of“The Pearl River Talent Recruitment Program”(2021ZT09X044).
文摘The mode-division multiplexing technique combined with a few-mode erbium-doped fiber amplifier(FM-EDFA)demonstrates significant potential for solving the capacity limitation of standard single-mode fiber(SSMF)transmission systems.However,the differential mode gain(DMG)arising in the FM-EDFA fundamentally limits its transmission capacity and length.Herein,an innovative DMG equalization strategy using femtosecond laser micromachining to adjust the refractive index(RI)is presented.Variable mode-dependent attenuations can be achieved according to the DMG profile of the FM-EDFA,enabling DMG equalization.To validate the proposed strategy,DMG equalization of the commonly used FM-EDFA configuration was investigated.Simulation results revealed that by optimizing both the length and RI modulation depth of the femtosecond laser-tailoring area,the maximum DMG(DMGmax)among the 3 linear-polarized(LP)mode-group was mitigated from 10 dB to 1.52 dB,whereas the average DMG(DMGave)over the C-band was reduced from 8.95 dB to 0.78 dB.Finally,a 2-LP mode-group DMG equalizer was experimentally demonstrated,resulting in a reduction of the DMGmax from 2.09 dB to 0.46 dB,and a reduction of DMGave over the C band from 1.64 dB to 0.26 dB,with only a 1.8 dB insertion loss.Moreover,a maximum range of variable DMG equalization was achieved with 5.4 dB,satisfying the requirements of the most commonly used 2-LP mode-group amplification scenarios.
文摘A piezoresistive silicon accelerometer fabricated by a selective,self-stopping porous silicon (PS) etching method using an epitaxial layer for movable microstructures is described and analyzed.The technique is capable of constructing a microstructure precisely.PS is used as a sacrificial layer,and releasing holes are etched in the film.TMAH solution with additional Si powder and (NH_4)_2S_2O_8 is used to remove PS through the small releasing holes without eroding uncovered Al.The designed fabrication process is full compatible with standard CMOS process.
文摘A novel into-plane rotating rnicromirror actuated by a hybrid electrostatic driving structure is presented. The hybrid driving structure is made up of a planar plate drive and a vertical comb drive. The device is fabricated in SOI substrate by using a bulk-and-surface mixed silicon micromachining process. As demonstrated by experiment, the novel driving structure can actuate the mirror to achieve large-range continuous rotation as well as spontaneous 90°rotation induced by the pull-in effect. The continuous rotating range of the micromirror is increased to about 46° at an increased yielding voltage. The measured yielding voltages of the mirrors with torsional springs of 1 and 0.5μm in thickness are 390 - 410V and 140 - 160V, respectively. The optical insertion loss has also been measured to be --1.98dB when the mirror serves as an optical switch.