Laser 3D printing based on melt growth has great potential in rapid preparation of Al_(2)O_(3)-based eutectic ce ramics.In this work,la rge-scale Al_(2)O_(3)/GdAlO_(3)/ZrO_(2)ternary eutectic ceramic rod with diameter...Laser 3D printing based on melt growth has great potential in rapid preparation of Al_(2)O_(3)-based eutectic ce ramics.In this work,la rge-scale Al_(2)O_(3)/GdAlO_(3)/ZrO_(2)ternary eutectic ceramic rod with diameter of 4-5 mm and height higher than 250 mm was additively manufactured by laser directed energy deposition.Especially,heat treatment was applied to eliminate the microstructure heterogeneity in the as-deposited eutectic ceramic,and the microstructure homogenization mechanism was studied in depth.The results indicate that colonies and banded structures completely disappear after the heat treatment,producing a homogeneous network eutectic structure.The microstructure homogenization is revealed to experience three stages of discontinuous coarsening,continuous coarsening and microstructure coalescence.Additionally,it is found that the eutectic spacing linearly increases with the heat treatment time,meaning that the coarsening behavior of the laser 3D-printed Al_(2)O_(3)/GdAlO_(3)/ZrO_(2)eutectic ceramic satisfies well with the Graham-Kraft model.展开更多
Laser-arc hybrid welding of AZ31B magnesium alloy was carried out,the effects of welding parameters on weld formation,microstructure homogeneity and mechanical properties were investigated.The results showed that lase...Laser-arc hybrid welding of AZ31B magnesium alloy was carried out,the effects of welding parameters on weld formation,microstructure homogeneity and mechanical properties were investigated.The results showed that laser-arc hybrid welding was beneficial to improve the weld formation of magnesium alloy by inhibiting the defect of undercut and pores.The weld microstructure was mainly columnar grains neighboring the fusion line and equiaxed grains at the weld center.It was interesting that the grain size at the upper arc zone was smaller than that at the lower laser zone,with the difference mainly affected by laser power rather than welding current and welding speed.The welding parameters were optimized as laser power of 3.5 kW,welding current of 100 A and welding speed of 1.5 m/min.In this case,the weld was free of undercut and pores,and the tensile strength and elongation rate reached 252 MPa and 11.2%,respectively.Finally,the microstructure homogeneity was illustrated according to the heat distribution,and the evolution law of tensile properties was discussed basing on the weld formation and microstructure characteristics.展开更多
To regulate the microstructure homogeneity of large aluminum structural forgings for aircraft,the surface cumulative plastic deformation was proposed.The microstructure of 7050 aluminum forgings after the surface cumu...To regulate the microstructure homogeneity of large aluminum structural forgings for aircraft,the surface cumulative plastic deformation was proposed.The microstructure of 7050 aluminum forgings after the surface cumulative plastic deformation was investigated by electron backscatter diffraction(EBSD),transmission electron microscopy(TEM),and X-ray diffraction(XRD).The results showed that the microstructure evolution of 7050 aluminum forgings was more sensitive to the deformation temperature than the strain rate.The dislocation density continued to increase with the decrease of the deformation temperature and the increase of the strain rate.Dislocation density and stored energy were accumulated by the surface cumulative plastic deformation.Besides,a static recrystallization(SRX)model of 7050 aluminum forgings was established.The SRX volume fraction calculated by this model was in good agreement with the experimental results,which indicated that the model could accurately describe the SRX behavior of 7050 aluminum forgings during the surface cumulative plastic deformation.展开更多
Cuttlebone is a natural material possessing the multifunctional properties of high porosity, high flexural stiffness and compressive strength, making it a fine example of design optimization of cellular structures cre...Cuttlebone is a natural material possessing the multifunctional properties of high porosity, high flexural stiffness and compressive strength, making it a fine example of design optimization of cellular structures created by nature. Examination of cuttlebone using scanning electron micros- copy (SEM) reveals an approximately periodic microstruc- ture, appropriate for computational characterization using direct homogenization techniques. In this paper, volume fractions and stiffness tensors were determined based on two different unit cell models that were extracted from two different cuttlefish samples. These characterized results were then used as the target values in an inverse homogenization procedure aiming to re-generate microstructures with the same properties as cuttlebone. Unit cells with similar topologies to the original cuttlebone unit cells were achieved, attaining the same volume fraction (i.e. bulk density) and the same (or very close) stiffness tensor. In addition, a range of alternate unit cell topologies were achieved also attaining the target properties, revealing the non-unique nature of this inverse homogenization problem.展开更多
Phases and microstructures of three high Zncontaining Al–Zn–Mg–Cu alloys were investigated by means of thermodynamic calculation method, optica microscopy(OM), scanning electron microscopy(SEM)energy dispersive...Phases and microstructures of three high Zncontaining Al–Zn–Mg–Cu alloys were investigated by means of thermodynamic calculation method, optica microscopy(OM), scanning electron microscopy(SEM)energy dispersive spectroscopy(EDS), X-ray diffraction(XRD), and differential scanning calorimetry(DSC) analysis. The results indicate that similar dendritic network morphologies are found in these three Al–Zn–Mg–Cu alloys. The as-cast 7056 aluminum alloy consists of aluminum solid solution, coarse Al/Mg(Cu, Zn, Al)2 eutectic phases, and fine intermetallic compounds g(MgZn2). Both of as-cast 7095 and 7136 aluminum alloys involve a(Al)eutectic Al/Mg(Cu, Zn, Al)2, intermetallic g(MgZn2), and h(Al2Cu). During homogenization at 450 ℃, fine g(MgZn2) can dissolve into matrix absolutely. After homogenization at 450 ℃ for 24 h, Mg(Cu, Zn, Al)2 phase in 7136 alloy transforms into S(Al2Cu Mg) while no change is found in 7056 and 7095 alloys. The thermodynamic calculation can be used to predict the phases in high Zncontaining Al–Zn–Mg–Cu alloys.展开更多
The inhomogeneous microstructure of the Ni-based superalloys used for turbine disks was an intolerable defect for the mechanical performance.The effects of the distribution ofγ'precipitate,forging temperature,and...The inhomogeneous microstructure of the Ni-based superalloys used for turbine disks was an intolerable defect for the mechanical performance.The effects of the distribution ofγ'precipitate,forging temperature,and strain level on the microstructure evolution of GH4730 alloy were investigated by EBSD during hot deformation.The results showed that the heterogeneous factor peaked at the transition temperature from the single-phase to the double-phase region.The coupling effect of heat and stress led to the heterogeneous precipitation and distribution ofγ'phase during the transition region,which was the main reason for the formation of inhomogeneous microstructures.The coherentγ'phases of approximately 0.3μm were diffusely distributed inside the large grains,increasing the grain strength,making recrystallization refinement difficult,and thus forming large unrecrystallized grains.The incoherentγ'phases with a size of approximately 1.1μm located at the grain boundaries and pinned the grain boundaries,and thus the accumulated strain at the grain boundaries caused the occurrence of discontinuous dynamic recrystallization and promoted continuous refinement of the grains.The microstructure evolution of new Ni-based superalloys during hot forging was focused,and the formation mechanism of inhomogeneous microstructure and control measures was explained.A theoretical basis for improving the microstructure homogeneity of the new cast and wrought superalloys was provided.展开更多
Recently it is a hot topic to make full use of high abundant Y element in Nd_(2)Fe_(14)B-type permanent magnets.In contrast to Pr and Nd elements,Y shows different metallurgical behaviors during preparation process.In...Recently it is a hot topic to make full use of high abundant Y element in Nd_(2)Fe_(14)B-type permanent magnets.In contrast to Pr and Nd elements,Y shows different metallurgical behaviors during preparation process.In this paper,we have explored the magnetic properties,microstructures and corrosion performance of Pr-Nd-Y-Fe-B magnets fabricated by spark plasma sintering(SPS)technique from the ribbons of nanocrystalline and amorphous precursors,respectively.The coercivity and maximum energy product were improved for the magnets prepared from amorphous precursor materials(denoted as SPS-A hereafter)compared with the magnets prepared from crystalline precursor materials(denoted as SPS-C hereafter).Magnetic properties of Jr=0.79 T,Hci=864 k A/m,and(BH)_(max)=102 k J/m^(3)were obtained for SPS-A magnets.In contrast with SPS-C magnets,the magnetic properties of SPS-A magnets are not so sensitive to the preparation conditions,which is quite beneficial to the homogeneity of microstructure and enhancement of coercivity for large-scale production of the designated magnets.Aggregated(Pr,Nd,Y)-rich phase was found out in SPS-C magnets.Pr and Nd elements are rich at grain boundary while Y is distributed uniformly at main phase and grain boundary phase.The strip grains and equiaxed grains exist in SPS-C and SPS-A magnets,respectively.The enhanced magnetic properties for SPS-A magnets are accredited to the uniform distribution of rare-earth-rich phase and low demagnetization factor.It is revealed by electrochemical test and dipping test that the corrosion potential is more positive and the corrosion rate is slower for the SPS-A magnets in 3.5 wt.%Na Cl solution.The work is also expected to shed light on developing the nanocrystalline Pr-Nd-Y-Fe-B SPSed high-performance magnets in industry.展开更多
A visco-plastic rate-dependent homogenization theory for particle-reinforced composites was derived and the equivalent elastic constants and the equivalent visco-plastic parameters of these composites were obtained. A...A visco-plastic rate-dependent homogenization theory for particle-reinforced composites was derived and the equivalent elastic constants and the equivalent visco-plastic parameters of these composites were obtained. A framework of homogenization the- ory for particle-reinforced W-Ni-Fe composites, a kind of tungsten alloy, was established. Based on the homogenization theory and a fixed-point iteration method, a unit cell model with typical microstructnres of the composite was established by using dynamic analysis program. The effects of tungsten content, tungsten particle shape and particle size and interface strength on the mechanical properties and the crack propagation of the W-Ni-Fe composite are analyzed under quasi-static and dynamic loadings. The stress-strain curves of the composite are given and the relation between the macro-mechanical characteristics and the microstructure parameters is explored, which provides an important theoretical basis for the optimization of the W-Ni-Fe composites.展开更多
基金financially supported by the National Key R&D Program of China(Nos.2018YFB1106600 and 2017YFB1103500)Science,Technology and Innovation Commission of Shenzhen Municipality(No.JCYJ20180306171121424)+4 种基金National Natural Science Foundation of China(Nos.51822405,51472200)Aeronautics Power Foundation(No.6141B09050337)Key R&D Program of Shaan Xi Province(No.2018ZDCXL-GY-09-04)Joint Research Funds of the Department of Science&Technology of Shaanxi Province and NPU(No.2020GXLH-Z-024)Research Fund of the State Key Laboratory of Solidification Processing(NPU)(No.2019QZ-02)。
文摘Laser 3D printing based on melt growth has great potential in rapid preparation of Al_(2)O_(3)-based eutectic ce ramics.In this work,la rge-scale Al_(2)O_(3)/GdAlO_(3)/ZrO_(2)ternary eutectic ceramic rod with diameter of 4-5 mm and height higher than 250 mm was additively manufactured by laser directed energy deposition.Especially,heat treatment was applied to eliminate the microstructure heterogeneity in the as-deposited eutectic ceramic,and the microstructure homogenization mechanism was studied in depth.The results indicate that colonies and banded structures completely disappear after the heat treatment,producing a homogeneous network eutectic structure.The microstructure homogenization is revealed to experience three stages of discontinuous coarsening,continuous coarsening and microstructure coalescence.Additionally,it is found that the eutectic spacing linearly increases with the heat treatment time,meaning that the coarsening behavior of the laser 3D-printed Al_(2)O_(3)/GdAlO_(3)/ZrO_(2)eutectic ceramic satisfies well with the Graham-Kraft model.
基金financially supported by the National Natural Science Foundation of China(grant nos.51905391,52025052 and 51975405)。
文摘Laser-arc hybrid welding of AZ31B magnesium alloy was carried out,the effects of welding parameters on weld formation,microstructure homogeneity and mechanical properties were investigated.The results showed that laser-arc hybrid welding was beneficial to improve the weld formation of magnesium alloy by inhibiting the defect of undercut and pores.The weld microstructure was mainly columnar grains neighboring the fusion line and equiaxed grains at the weld center.It was interesting that the grain size at the upper arc zone was smaller than that at the lower laser zone,with the difference mainly affected by laser power rather than welding current and welding speed.The welding parameters were optimized as laser power of 3.5 kW,welding current of 100 A and welding speed of 1.5 m/min.In this case,the weld was free of undercut and pores,and the tensile strength and elongation rate reached 252 MPa and 11.2%,respectively.Finally,the microstructure homogeneity was illustrated according to the heat distribution,and the evolution law of tensile properties was discussed basing on the weld formation and microstructure characteristics.
基金supported by the Natural Science Foundation of Hebei Province, China (No. E2019203075)the Top Young Talents Project of the Education Department of Hebei Province, China (No. BJ2019001)the State Key Laboratory Program of High Performance Complex Manufacturing, China (No. Kfkt2017-07)
文摘To regulate the microstructure homogeneity of large aluminum structural forgings for aircraft,the surface cumulative plastic deformation was proposed.The microstructure of 7050 aluminum forgings after the surface cumulative plastic deformation was investigated by electron backscatter diffraction(EBSD),transmission electron microscopy(TEM),and X-ray diffraction(XRD).The results showed that the microstructure evolution of 7050 aluminum forgings was more sensitive to the deformation temperature than the strain rate.The dislocation density continued to increase with the decrease of the deformation temperature and the increase of the strain rate.Dislocation density and stored energy were accumulated by the surface cumulative plastic deformation.Besides,a static recrystallization(SRX)model of 7050 aluminum forgings was established.The SRX volume fraction calculated by this model was in good agreement with the experimental results,which indicated that the model could accurately describe the SRX behavior of 7050 aluminum forgings during the surface cumulative plastic deformation.
基金supported by Australian Research Council Discovery Project grant
文摘Cuttlebone is a natural material possessing the multifunctional properties of high porosity, high flexural stiffness and compressive strength, making it a fine example of design optimization of cellular structures created by nature. Examination of cuttlebone using scanning electron micros- copy (SEM) reveals an approximately periodic microstruc- ture, appropriate for computational characterization using direct homogenization techniques. In this paper, volume fractions and stiffness tensors were determined based on two different unit cell models that were extracted from two different cuttlefish samples. These characterized results were then used as the target values in an inverse homogenization procedure aiming to re-generate microstructures with the same properties as cuttlebone. Unit cells with similar topologies to the original cuttlebone unit cells were achieved, attaining the same volume fraction (i.e. bulk density) and the same (or very close) stiffness tensor. In addition, a range of alternate unit cell topologies were achieved also attaining the target properties, revealing the non-unique nature of this inverse homogenization problem.
基金financially supported by the National Program on Key Basic Research Project of China (No. 2012CB619504)National Natural Science Foundation of China (No. 51271037)the International Scientific and Technological Cooperation Projects (No. 2010DFB50340)
文摘Phases and microstructures of three high Zncontaining Al–Zn–Mg–Cu alloys were investigated by means of thermodynamic calculation method, optica microscopy(OM), scanning electron microscopy(SEM)energy dispersive spectroscopy(EDS), X-ray diffraction(XRD), and differential scanning calorimetry(DSC) analysis. The results indicate that similar dendritic network morphologies are found in these three Al–Zn–Mg–Cu alloys. The as-cast 7056 aluminum alloy consists of aluminum solid solution, coarse Al/Mg(Cu, Zn, Al)2 eutectic phases, and fine intermetallic compounds g(MgZn2). Both of as-cast 7095 and 7136 aluminum alloys involve a(Al)eutectic Al/Mg(Cu, Zn, Al)2, intermetallic g(MgZn2), and h(Al2Cu). During homogenization at 450 ℃, fine g(MgZn2) can dissolve into matrix absolutely. After homogenization at 450 ℃ for 24 h, Mg(Cu, Zn, Al)2 phase in 7136 alloy transforms into S(Al2Cu Mg) while no change is found in 7056 and 7095 alloys. The thermodynamic calculation can be used to predict the phases in high Zncontaining Al–Zn–Mg–Cu alloys.
基金supported by the National Key R&D Program of China(No.2017YFA0700703)the National Natural Science Foundation of China(No.52074092).
文摘The inhomogeneous microstructure of the Ni-based superalloys used for turbine disks was an intolerable defect for the mechanical performance.The effects of the distribution ofγ'precipitate,forging temperature,and strain level on the microstructure evolution of GH4730 alloy were investigated by EBSD during hot deformation.The results showed that the heterogeneous factor peaked at the transition temperature from the single-phase to the double-phase region.The coupling effect of heat and stress led to the heterogeneous precipitation and distribution ofγ'phase during the transition region,which was the main reason for the formation of inhomogeneous microstructures.The coherentγ'phases of approximately 0.3μm were diffusely distributed inside the large grains,increasing the grain strength,making recrystallization refinement difficult,and thus forming large unrecrystallized grains.The incoherentγ'phases with a size of approximately 1.1μm located at the grain boundaries and pinned the grain boundaries,and thus the accumulated strain at the grain boundaries caused the occurrence of discontinuous dynamic recrystallization and promoted continuous refinement of the grains.The microstructure evolution of new Ni-based superalloys during hot forging was focused,and the formation mechanism of inhomogeneous microstructure and control measures was explained.A theoretical basis for improving the microstructure homogeneity of the new cast and wrought superalloys was provided.
基金supported by the National Natural Science Foundation of China(Nos.51901089 and 51671097)the Foundation of Jiangxi Educational Committee(No.GJJ180472)+2 种基金the Science and Technology Program of Fujian Province(No.2017T3001)the Key Research and Development Program of Jinagxi Province(No.20201BBE51010)the Ph D.Start-up Foundation of Jiangxi University of Science and Technology(No.JXXJBS18052)。
文摘Recently it is a hot topic to make full use of high abundant Y element in Nd_(2)Fe_(14)B-type permanent magnets.In contrast to Pr and Nd elements,Y shows different metallurgical behaviors during preparation process.In this paper,we have explored the magnetic properties,microstructures and corrosion performance of Pr-Nd-Y-Fe-B magnets fabricated by spark plasma sintering(SPS)technique from the ribbons of nanocrystalline and amorphous precursors,respectively.The coercivity and maximum energy product were improved for the magnets prepared from amorphous precursor materials(denoted as SPS-A hereafter)compared with the magnets prepared from crystalline precursor materials(denoted as SPS-C hereafter).Magnetic properties of Jr=0.79 T,Hci=864 k A/m,and(BH)_(max)=102 k J/m^(3)were obtained for SPS-A magnets.In contrast with SPS-C magnets,the magnetic properties of SPS-A magnets are not so sensitive to the preparation conditions,which is quite beneficial to the homogeneity of microstructure and enhancement of coercivity for large-scale production of the designated magnets.Aggregated(Pr,Nd,Y)-rich phase was found out in SPS-C magnets.Pr and Nd elements are rich at grain boundary while Y is distributed uniformly at main phase and grain boundary phase.The strip grains and equiaxed grains exist in SPS-C and SPS-A magnets,respectively.The enhanced magnetic properties for SPS-A magnets are accredited to the uniform distribution of rare-earth-rich phase and low demagnetization factor.It is revealed by electrochemical test and dipping test that the corrosion potential is more positive and the corrosion rate is slower for the SPS-A magnets in 3.5 wt.%Na Cl solution.The work is also expected to shed light on developing the nanocrystalline Pr-Nd-Y-Fe-B SPSed high-performance magnets in industry.
基金supported by the National Natural Science Foundation of China (Grant No. 11032002 and 91016013)the program for New Century Excellent Talents in University+1 种基金National Basic Research Program of China (Grant No. 2010CB832706)the project of State Key Laboratory of Explosion Science and Technology (Beijing Institute of Technology)(Grant No. ZDKT10-03a)
文摘A visco-plastic rate-dependent homogenization theory for particle-reinforced composites was derived and the equivalent elastic constants and the equivalent visco-plastic parameters of these composites were obtained. A framework of homogenization the- ory for particle-reinforced W-Ni-Fe composites, a kind of tungsten alloy, was established. Based on the homogenization theory and a fixed-point iteration method, a unit cell model with typical microstructnres of the composite was established by using dynamic analysis program. The effects of tungsten content, tungsten particle shape and particle size and interface strength on the mechanical properties and the crack propagation of the W-Ni-Fe composite are analyzed under quasi-static and dynamic loadings. The stress-strain curves of the composite are given and the relation between the macro-mechanical characteristics and the microstructure parameters is explored, which provides an important theoretical basis for the optimization of the W-Ni-Fe composites.