C–Mn steels prepared by annealing at 800°C for 120 s and overaging at 250–400°C were subjected to pre-straining(2%) and baking treatments(170°C for 20 min) to measure their bake-hardening(BH_2) ...C–Mn steels prepared by annealing at 800°C for 120 s and overaging at 250–400°C were subjected to pre-straining(2%) and baking treatments(170°C for 20 min) to measure their bake-hardening(BH_2) values. The effects of overaging temperature on the microstructure, mechanical properties, and BH_2 behavior of 600 MPa cold-rolled dual-phase(DP) steel were investigated by optical microscopy, scanning electron microscopy, and tensile tests. The results indicated that the martensite morphology exhibited less variation when the DP steel was overaged at 250–350°C. However, when the DP steel was overaged at 400°C, numerous non-martensite and carbide particles formed and yield-point elongation was observed in the tensile curve. When the overaging temperature was increased from 250 to 400°C, the yield strength increased from 272 to 317 MPa, the tensile strength decreased from 643 to 574 MPa, and the elongation increased from 27.8% to 30.6%. Furthermore, with an increase in overaging temperature from 250 to 400°C, the BH_2 value initially increases and then decreases. The maximum BH_2 value of 83 MPa was observed for the specimen overaged at 350°C.展开更多
The microstructure of high chrome bricks made at different sintering temperature are analyzed by SEM . The results indicate that the sintering temperature of high chromebricks has an optimum range , it is not the high...The microstructure of high chrome bricks made at different sintering temperature are analyzed by SEM . The results indicate that the sintering temperature of high chromebricks has an optimum range , it is not the higher, the better, The high chrome bricks made at this -sintering temperature have the moderate crystal six in the matrix and of dense structure. The closed bonding structure could be obtained between grains and matrix and no crackle occurred.The high chrome bricks with this microstructure have the best dynamic properties.展开更多
Carbon fiber reinforced phenolic based composites were prepared by laminating molding. The variation in mechanical characteristics of composites was evaluated with heating temperature and procedure. The microstructure...Carbon fiber reinforced phenolic based composites were prepared by laminating molding. The variation in mechanical characteristics of composites was evaluated with heating temperature and procedure. The microstructures of composites at different temperatures were observed by optical microscope and scanning electron microscope, respectively. The results showed that the main weight loss range of carbon/phenolic is from 300 to 800 ℃, before 700 ℃ the weight loss was resulted from pyrolysis and after that the weight loss was mainly by oxidation in the fiber phase; with the heat treatment temperature rising, the bonding at the interface of carbon fibers and resin matrix weakened; in the pyrolysis temperature range, the interlaminar shear strength(ILSS) of carbon/phenolic showed a rapid drop with temperature rising, and then decrease in the rate of ILSS became relatively slower; the fiber oxidation had little influence on the ILSS.展开更多
The effect of aging on the mechanical properties and microstructures of a new ZG12Cr9 MolColNiVNbNB ferritic heat resistant steel was investigated in this work to satisfy the high steam parameters of the ultra-supercr...The effect of aging on the mechanical properties and microstructures of a new ZG12Cr9 MolColNiVNbNB ferritic heat resistant steel was investigated in this work to satisfy the high steam parameters of the ultra-supercritical power plant.The results show that the main precipitates during aging are Fe(Cr,Mo)23C6,V(Nb)C,and(Fe2Mo) Laves in the steel.The amounts of the precipitated phases increase during aging,and correspondingly,the morphologies of phases are similar to be round.Fe(Cr,Mo)23C6 appears along boundaries and grows with increasing temperature.In addition,it is revealed that the martensitic laths are coarsened and eventually happen to be polygonization.The hardness and strength decrease gradually,whereas the plasticity of the steel increases.What's more,the hardness of this steel after creep is similar to that of other 9%-12%Cr ferritic steels.Thus,ZG12Cr9 MolColNiVNbNB can be used in the project.展开更多
A novel temperature fluctuation synthesis/simultaneous densification process was developed for the preparation of Ti3SiC2 bulk ceramics. In this process. Si is used as an in-situ liquid forming phase and it is favorab...A novel temperature fluctuation synthesis/simultaneous densification process was developed for the preparation of Ti3SiC2 bulk ceramics. In this process. Si is used as an in-situ liquid forming phase and it is favorable for both the solid-liquid synthesis and the densification of Ti3SiC2 rainies. The present work demonstrated that the temperature fluctuation synthesis/simultaneous densification process is one of the most effective and simple methods for the preparation of Ti3SiC2 bulk materials providing relatively low synthesis temperature. short reaction time; and simultaneous synthesis and densification. This work also showed the capability to control the microstructure, e.g., the preferred orientation, of the bulk Ti3SiC2 materials simply by applying the hot pressing pressure at different Stages of the temperature fluctuation process. And textured Ti3SiC2 bulk materials with {002} faces of laminated Ti3SiC2 grains normal to the hot pressing axis were prepared.展开更多
Directly quenched Nd9.5Fe81Zr3B6.5 nanocomposite permanent magnets were prepared under different melt treatment conditions, i.e., the melt temperature was varied prior to ejection onto the quenching wheel. The effect ...Directly quenched Nd9.5Fe81Zr3B6.5 nanocomposite permanent magnets were prepared under different melt treatment conditions, i.e., the melt temperature was varied prior to ejection onto the quenching wheel. The effect of quenching temperature on the microstructure and magnetic properties of the alloys was studied by X-ray diffractometry, transmission electron microscopy and magnetization measurements. It is found that a finer and more uniform microstructure can be obtained directly from the melt quenched at lower temperature. With increasing initial quenching temperature, the optimal quenching speed decreases and the microstructure of the ribbons becomes coarser and more irregular. As a result, the magnetic properties of the alloys are deteriorated. It is believed that the break of the pre-existing Nd2Fe14B clusters and decrease in number of the developing nuclei of Nd2Fe14B phase with increase in quenching temperature may be the causes for the change of the microstructure and the magnetic properties of the ribbons.展开更多
This study aims at evidencing the effects of lime treatment on the microstructure and hydraulic conductivityof a compacted expansive clay, with emphasis put on the effect of lime hydration and modification.For this pu...This study aims at evidencing the effects of lime treatment on the microstructure and hydraulic conductivityof a compacted expansive clay, with emphasis put on the effect of lime hydration and modification.For this purpose, evolutions of hydraulic conductivity were investigated for both lime-treatedand untreated soil specimens over 7 d after full saturation of the specimens and their microstructureswere observed at the end. Note that for the treated specimen, dry clay powder was mixed with quicklimeprior to compaction in order to study the effect of lime hydration. It is observed that lime hydration andmodification did not affect the intra-aggregate pores but increased the inter-aggregates pores size. Thisincrease gave rise to an increase of hydraulic conductivity. More precisely, the hydraulic conductivity oflime-treated specimen increased progressively during the first 3 d of modification phase and stabilisedduring the next 4 d which correspond to a short period prior to the stabilisation phase. The microstructureobservation showed that stabilisation reactions took place after 7 d. Under the effect of stabilisation,a decreasing hydraulic conductivity can be expected in longer time due to the formation ofcementitious compounds. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.展开更多
Low valence vanadium oxide(VO2-x) thin films were prepared on SiO2/Si substrates at room temperature by direct current facing targets reactive magnetron sputtering, and then proc- essed through rapid thermal annealing...Low valence vanadium oxide(VO2-x) thin films were prepared on SiO2/Si substrates at room temperature by direct current facing targets reactive magnetron sputtering, and then proc- essed through rapid thermal annealing. The effects of the annealing on the structure and phase transition property of VO2 were discussed. X-ray photoelectron spectroscopy, X-ray diffraction tech- nique and Fourier transform infrared spectroscopy were employed to study the phase composition and structure of the thin films. The resistance-temperature property was measured. The results show that VO2 thin film is obtained after annealed at 320 ℃ for 3 h, its phase transition tempera- ture is 56 ℃, and the resistance changes by more than 2 orders. The vanadium oxide thin films are applicable in thermochromic smart windows, and the deposition and annealing process is compatible with micro electromechanical system process.展开更多
ZrC coatings were deposited on graphite substrates by low pressure chemical vapor deposition(LPCVD) with the Br2-Zr-C3H6-H2-Ar system. The effects of deposition time on the microstructures and growth behavior of ZrC...ZrC coatings were deposited on graphite substrates by low pressure chemical vapor deposition(LPCVD) with the Br2-Zr-C3H6-H2-Ar system. The effects of deposition time on the microstructures and growth behavior of ZrC coatings were investigated. ZrC coating grew in an island-layer mode. The formation of coating was dominated by the nucleation of ZrC in the initial 20 minutes, and the rapid nucleation generated a fine-grained structure of ZrC coating. When the deposition time was over 30 min, the growth of coating was dominated by that of crystals, giving a column-arranged structure. Energy dispersive X-ray spectroscopy showed that the molar ratio of carbon to zirconium was near 1:1 in ZrC coating, and X-ray photoelectron spectroscopy showed that ZrC was the main phase in coatings, accompanied by about 2.5mol% ZrO2 minor phase.展开更多
Temperature rise is a significant factor influencing microstructure during(α+β) deformation of TA15 titanium alloy.An experiment was designed to explore microstructure evolution induced by temperature rise due to...Temperature rise is a significant factor influencing microstructure during(α+β) deformation of TA15 titanium alloy.An experiment was designed to explore microstructure evolution induced by temperature rise due to deformation heat.The experiment was carried out in(α+β) phase field at typical temperature rise rates.The microstructures of the alloy under different temperature rise rates were observed by scanning electron microscopy(SEM).It is found that the dissolution rate of primary equiaxed a phase increases with the increase in both temperature and temperature rise rate.In the same temperature range,the higher the temperature rise rate is,the larger the final content and grain size of primary equiaxed a phase are due to less dissolution time.To quantitatively depict the evolution behavior of primary equiaxed a phase under any temperature rise rates,the dissolution kinetics of primary equiaxed a phase were well described by a diffusion model.The model predictions,including content and grain size of primary equiaxed a phase,are in good agreement with experimental observations.The work provides an important basis for the prediction and control of microstructure during hot working of titanium alloy.展开更多
The effects of Cr content and annealing temperature on abrasive wear characteristics of cast ausferrite nodular iron were investigated with Suga type abrasive wear tester. The surface morphology and Vickers hardness o...The effects of Cr content and annealing temperature on abrasive wear characteristics of cast ausferrite nodular iron were investigated with Suga type abrasive wear tester. The surface morphology and Vickers hardness of the tested samples were analyzed by scanning electron microscopy(SEM), digital microscope and Vickers hardness tester. The results show that the cast ausferrite nodular iron could be obtained by alloying with Cr in the as-cast ductile cast iron and permanent mold casting, and the bainite content in the matrix increased with increasing Cr content. However, the decomposition of bainite took place during annealing at 500 °C to 800 °C; especially, at 800 °C, the bainite transformed into a mixture of fine lamellar pearlite and ferrite matrix structure. The wear loss of specimens was reduced with increasing Cr content in the cast ausferrite nodular iron. The wear loss of the sample cast ausferrite nodular iron with 0.4mass% Cr is the least. The wear loss began to increase while the Cr content is 0.6mass%. The wear loss of annealed ductile irons at different annealing temperatures was higher than that of as-cast samples. During the abrasive wear, the shear stress transformed austenite to martensite, and the hardness of specimens increased and the wear resistance of as-cast ductile cast iron was improved.展开更多
Through molecular dynamics(MD) simulation, the dependencies of temperature, grain size and strain rate on the mechanical properties were studied. The simulation results demonstrated that the strain rate from 0.05 to...Through molecular dynamics(MD) simulation, the dependencies of temperature, grain size and strain rate on the mechanical properties were studied. The simulation results demonstrated that the strain rate from 0.05 to 2 ns–1 affected the Young's modulus of nickel nanowires slightly, whereas the yield stress increased. The Young's modulus decreased approximately linearly; however, the yield stress firstly increased and subsequently dropped as the temperature increased. The Young's modulus and yield stress increased as the mean grain size increased from 2.66 to 6.72 nm. Moreover, certain efforts have been made in the microstructure evolution with mechanical properties association under uniaxial tension. Certain phenomena such as the formation of twin structures, which were found in nanowires with larger grain size at higher strain rate and lower temperature, as well as the movement of grain boundaries and dislocation, were detected and discussed in detail. The results demonstrated that the plastic deformation was mainly accommodated by the motion of grain boundaries for smaller grain size. However, for larger grain size, the formations of stacking faults and twins were the main mechanisms of plastic deformation in the polycrystalline nickel nanowire.展开更多
7085-T7452 plates with a thickness of 12 mm were welded by conventional single side and bobbin tool friction stir welding (SS-FSW and BB-FSW, respectively) at different welding parameters. The temperature distributi...7085-T7452 plates with a thickness of 12 mm were welded by conventional single side and bobbin tool friction stir welding (SS-FSW and BB-FSW, respectively) at different welding parameters. The temperature distribution, microstructure evolution and mechanical properties of joints along the thickness direction were investigated, and digital image correlation (DIC) was utilized to evaluate quantitatively the deformation of different zones during tensile tests. The results indicated that heat-affected zone (HAZ), the local softening region, was responsible for the early plastic deformation and also the fracture location for SS-FSW samples, while a rapid fracture was observed in weld nugget zone (WNZ) before yield behavior for all BB-FSW specimens. The ultimate tensile strength (UTS) of SS-FSW joints presented the highest value of 410 MPa, 82% of the base material, at a rotational speed of 300 rpm and welding speed of 60 mm/min, much higher than that of BB-FSW joints, with a joint efficiency of only 47%. This should be attributed to the Lazy S defect produced by a larger extent of heat input during the BB-FSW process, The whole joint exhibited a much higher elongation than the slices. Scanning electron microscopic (SEM) analysis of the fracture morphologies showed that joints failed through ductile fracture for SS-FSW and brittle fracture for BB-FSW.展开更多
Microstructural evolution and mechanical properties of cryogenic rolled Fe-36Ni steel were investigated. The annealed Fe-36Ni steel was rolled at cryogenic temperature( 123-173 K) with 20%- 90% rolling reduction in ...Microstructural evolution and mechanical properties of cryogenic rolled Fe-36Ni steel were investigated. The annealed Fe-36Ni steel was rolled at cryogenic temperature( 123-173 K) with 20%- 90% rolling reduction in thickness.The deformation process was accompanied by twinning at cryogenic temperature,and the mean thickness of deformation twins was about 200 nm with 20% rolling reduction. When the rolling reduction was above 40%,twinning was suppressed due to the stress concentration in the tested steel. Deformation microstructure of Fe-36Ni steel consisted of both twin boundaries and dislocations by cryogenic rolling( CR),while it only contained dislocations after rolling at room temperature( RT). The tensile strength of Fe-36Ni steel was improved to 930 MPa after 90% reduction at cryogenic temperature,while the tensile strength after 90% reduction at RT was only 760 MPa. More dislocations could be produced as the nucleation sites of recrystallization during CR process.展开更多
The microstructure evolution and impact-toughness variation of heat-affected zone(HAZ)in X80 highstrain pipeline steel were investigated via a welding thermal-simulation technique,Charpy impact tests,and scanning el...The microstructure evolution and impact-toughness variation of heat-affected zone(HAZ)in X80 highstrain pipeline steel were investigated via a welding thermal-simulation technique,Charpy impact tests,and scanning electron microscopy observations under different welding heat inputs and peak temperatures.The results indicate that when heat input was between 17 and 25kJ·cm^(-1),the coarse-grained heat-affected zone showed improved impact toughness.When the heat input was increased further,the martensite-austenite(M-A)islands transformed from fine lath into a massive block.Therefore,impact toughness was substantially reduced.When the heat input was 20kJ·cm^(-1) and the peak temperature of the first thermal cycle was between 900 and 1300°C,a higher impact toughness was obtained.When heat input was 20kJ·cm^(-1) and the peak temperature of the first thermal cycle was 1300°C,the impact toughness value at the second peak temperature of 900°C was higher than that at the second peak temperature of 800°C because of grain refining and uniformly dispersed M-A constituents in the matrix of bainite.展开更多
The present work aims to compare the amorphous phase forming ability of ternary and quaternary Al based alloys (Al86Ni8Y6, Al86GNi6Y6Co2, Al86NigLa6 and Al86Ni8Y45La15) synthesized via mechanical alloying by varying...The present work aims to compare the amorphous phase forming ability of ternary and quaternary Al based alloys (Al86Ni8Y6, Al86GNi6Y6Co2, Al86NigLa6 and Al86Ni8Y45La15) synthesized via mechanical alloying by varying the composition, i.e. fully or partially replacing rare earth (RE) and transition metal (TM) elements based on similar atomic radii and coordination number. X-ray diffraction and high resolution transmission electron microscopy study revealed that the amorphization process occurred through formation of various intermetallic phases and nanocrystalline FCC Al. Fully amorphous phase was obtained for the alloys not containing lanthanum, whereas the other alloys containing La showed partial amorphization with reappearance of intermetallic phases attributed to mechanical crystallization. Differential scanning calorimetry study confirmed better thermal stability with wider transformation temperature for the alloys without La.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.U1360202,51472030,and 51502014)
文摘C–Mn steels prepared by annealing at 800°C for 120 s and overaging at 250–400°C were subjected to pre-straining(2%) and baking treatments(170°C for 20 min) to measure their bake-hardening(BH_2) values. The effects of overaging temperature on the microstructure, mechanical properties, and BH_2 behavior of 600 MPa cold-rolled dual-phase(DP) steel were investigated by optical microscopy, scanning electron microscopy, and tensile tests. The results indicated that the martensite morphology exhibited less variation when the DP steel was overaged at 250–350°C. However, when the DP steel was overaged at 400°C, numerous non-martensite and carbide particles formed and yield-point elongation was observed in the tensile curve. When the overaging temperature was increased from 250 to 400°C, the yield strength increased from 272 to 317 MPa, the tensile strength decreased from 643 to 574 MPa, and the elongation increased from 27.8% to 30.6%. Furthermore, with an increase in overaging temperature from 250 to 400°C, the BH_2 value initially increases and then decreases. The maximum BH_2 value of 83 MPa was observed for the specimen overaged at 350°C.
文摘The microstructure of high chrome bricks made at different sintering temperature are analyzed by SEM . The results indicate that the sintering temperature of high chromebricks has an optimum range , it is not the higher, the better, The high chrome bricks made at this -sintering temperature have the moderate crystal six in the matrix and of dense structure. The closed bonding structure could be obtained between grains and matrix and no crackle occurred.The high chrome bricks with this microstructure have the best dynamic properties.
基金the Innovation Foundation of Postgraduate of Jiangsu Province,China(No.CX08B_134Z)Beforehand Research Fund of Defense Technology(No.404040301)The Fundamental Research Funds for the Central Universities(No.NUST2011XQTR13)
文摘Carbon fiber reinforced phenolic based composites were prepared by laminating molding. The variation in mechanical characteristics of composites was evaluated with heating temperature and procedure. The microstructures of composites at different temperatures were observed by optical microscope and scanning electron microscope, respectively. The results showed that the main weight loss range of carbon/phenolic is from 300 to 800 ℃, before 700 ℃ the weight loss was resulted from pyrolysis and after that the weight loss was mainly by oxidation in the fiber phase; with the heat treatment temperature rising, the bonding at the interface of carbon fibers and resin matrix weakened; in the pyrolysis temperature range, the interlaminar shear strength(ILSS) of carbon/phenolic showed a rapid drop with temperature rising, and then decrease in the rate of ILSS became relatively slower; the fiber oxidation had little influence on the ILSS.
基金supported by the Science and Technology Program of Sichuan Province,China(No.2013GZX0146)
文摘The effect of aging on the mechanical properties and microstructures of a new ZG12Cr9 MolColNiVNbNB ferritic heat resistant steel was investigated in this work to satisfy the high steam parameters of the ultra-supercritical power plant.The results show that the main precipitates during aging are Fe(Cr,Mo)23C6,V(Nb)C,and(Fe2Mo) Laves in the steel.The amounts of the precipitated phases increase during aging,and correspondingly,the morphologies of phases are similar to be round.Fe(Cr,Mo)23C6 appears along boundaries and grows with increasing temperature.In addition,it is revealed that the martensitic laths are coarsened and eventually happen to be polygonization.The hardness and strength decrease gradually,whereas the plasticity of the steel increases.What's more,the hardness of this steel after creep is similar to that of other 9%-12%Cr ferritic steels.Thus,ZG12Cr9 MolColNiVNbNB can be used in the project.
基金the National Outstanding YOung Scientist Foundation Under Grant !No.59925208 the National Natural Science Foundation of China
文摘A novel temperature fluctuation synthesis/simultaneous densification process was developed for the preparation of Ti3SiC2 bulk ceramics. In this process. Si is used as an in-situ liquid forming phase and it is favorable for both the solid-liquid synthesis and the densification of Ti3SiC2 rainies. The present work demonstrated that the temperature fluctuation synthesis/simultaneous densification process is one of the most effective and simple methods for the preparation of Ti3SiC2 bulk materials providing relatively low synthesis temperature. short reaction time; and simultaneous synthesis and densification. This work also showed the capability to control the microstructure, e.g., the preferred orientation, of the bulk Ti3SiC2 materials simply by applying the hot pressing pressure at different Stages of the temperature fluctuation process. And textured Ti3SiC2 bulk materials with {002} faces of laminated Ti3SiC2 grains normal to the hot pressing axis were prepared.
基金Projects(51201109,51001076)supported by the National Natural Science Foundation of ChinaProject(T201108)supported by Shenzhen Key Laboratory of Special Functional Materials(Shenzhen University),China
文摘Directly quenched Nd9.5Fe81Zr3B6.5 nanocomposite permanent magnets were prepared under different melt treatment conditions, i.e., the melt temperature was varied prior to ejection onto the quenching wheel. The effect of quenching temperature on the microstructure and magnetic properties of the alloys was studied by X-ray diffractometry, transmission electron microscopy and magnetization measurements. It is found that a finer and more uniform microstructure can be obtained directly from the melt quenched at lower temperature. With increasing initial quenching temperature, the optimal quenching speed decreases and the microstructure of the ribbons becomes coarser and more irregular. As a result, the magnetic properties of the alloys are deteriorated. It is believed that the break of the pre-existing Nd2Fe14B clusters and decrease in number of the developing nuclei of Nd2Fe14B phase with increase in quenching temperature may be the causes for the change of the microstructure and the magnetic properties of the ribbons.
基金the French National Research Agency for funding the present study within the project-TERDOUEST "Sustainable earthworks involving treated soils"
文摘This study aims at evidencing the effects of lime treatment on the microstructure and hydraulic conductivityof a compacted expansive clay, with emphasis put on the effect of lime hydration and modification.For this purpose, evolutions of hydraulic conductivity were investigated for both lime-treatedand untreated soil specimens over 7 d after full saturation of the specimens and their microstructureswere observed at the end. Note that for the treated specimen, dry clay powder was mixed with quicklimeprior to compaction in order to study the effect of lime hydration. It is observed that lime hydration andmodification did not affect the intra-aggregate pores but increased the inter-aggregates pores size. Thisincrease gave rise to an increase of hydraulic conductivity. More precisely, the hydraulic conductivity oflime-treated specimen increased progressively during the first 3 d of modification phase and stabilisedduring the next 4 d which correspond to a short period prior to the stabilisation phase. The microstructureobservation showed that stabilisation reactions took place after 7 d. Under the effect of stabilisation,a decreasing hydraulic conductivity can be expected in longer time due to the formation ofcementitious compounds. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.
基金Natural Science Foundation of Tianjin(No.043100811)the Key Program of Natural Science Foundation of Tianjin(No.08JCZDJC17500)
文摘Low valence vanadium oxide(VO2-x) thin films were prepared on SiO2/Si substrates at room temperature by direct current facing targets reactive magnetron sputtering, and then proc- essed through rapid thermal annealing. The effects of the annealing on the structure and phase transition property of VO2 were discussed. X-ray photoelectron spectroscopy, X-ray diffraction tech- nique and Fourier transform infrared spectroscopy were employed to study the phase composition and structure of the thin films. The resistance-temperature property was measured. The results show that VO2 thin film is obtained after annealed at 320 ℃ for 3 h, its phase transition tempera- ture is 56 ℃, and the resistance changes by more than 2 orders. The vanadium oxide thin films are applicable in thermochromic smart windows, and the deposition and annealing process is compatible with micro electromechanical system process.
基金Founded by the National Natural Science Foundation of China(No.91216302)the National Program on Key Basic Research Project of the People's Republic of China(No.2015CB655200)
文摘ZrC coatings were deposited on graphite substrates by low pressure chemical vapor deposition(LPCVD) with the Br2-Zr-C3H6-H2-Ar system. The effects of deposition time on the microstructures and growth behavior of ZrC coatings were investigated. ZrC coating grew in an island-layer mode. The formation of coating was dominated by the nucleation of ZrC in the initial 20 minutes, and the rapid nucleation generated a fine-grained structure of ZrC coating. When the deposition time was over 30 min, the growth of coating was dominated by that of crystals, giving a column-arranged structure. Energy dispersive X-ray spectroscopy showed that the molar ratio of carbon to zirconium was near 1:1 in ZrC coating, and X-ray photoelectron spectroscopy showed that ZrC was the main phase in coatings, accompanied by about 2.5mol% ZrO2 minor phase.
基金financially supported by the National Natural Science Foundation of China (Nos.51175427 and 51205317)the Open Fund of State Key Laboratory of Materials Processing and Die & Mould Technology of China (No.P2014-005)+1 种基金the Marie Curie International Research Staff Exchange Scheme within the 7th EC Framework Programme (FP7) (No.318968)the Programme of Introducing Talents of Discipline to Universities (No.B08040)
文摘Temperature rise is a significant factor influencing microstructure during(α+β) deformation of TA15 titanium alloy.An experiment was designed to explore microstructure evolution induced by temperature rise due to deformation heat.The experiment was carried out in(α+β) phase field at typical temperature rise rates.The microstructures of the alloy under different temperature rise rates were observed by scanning electron microscopy(SEM).It is found that the dissolution rate of primary equiaxed a phase increases with the increase in both temperature and temperature rise rate.In the same temperature range,the higher the temperature rise rate is,the larger the final content and grain size of primary equiaxed a phase are due to less dissolution time.To quantitatively depict the evolution behavior of primary equiaxed a phase under any temperature rise rates,the dissolution kinetics of primary equiaxed a phase were well described by a diffusion model.The model predictions,including content and grain size of primary equiaxed a phase,are in good agreement with experimental observations.The work provides an important basis for the prediction and control of microstructure during hot working of titanium alloy.
基金Item Sponsored by Important National Science and Technology Specific Project of China(2012ZX04010-031)
文摘The effects of Cr content and annealing temperature on abrasive wear characteristics of cast ausferrite nodular iron were investigated with Suga type abrasive wear tester. The surface morphology and Vickers hardness of the tested samples were analyzed by scanning electron microscopy(SEM), digital microscope and Vickers hardness tester. The results show that the cast ausferrite nodular iron could be obtained by alloying with Cr in the as-cast ductile cast iron and permanent mold casting, and the bainite content in the matrix increased with increasing Cr content. However, the decomposition of bainite took place during annealing at 500 °C to 800 °C; especially, at 800 °C, the bainite transformed into a mixture of fine lamellar pearlite and ferrite matrix structure. The wear loss of specimens was reduced with increasing Cr content in the cast ausferrite nodular iron. The wear loss of the sample cast ausferrite nodular iron with 0.4mass% Cr is the least. The wear loss began to increase while the Cr content is 0.6mass%. The wear loss of annealed ductile irons at different annealing temperatures was higher than that of as-cast samples. During the abrasive wear, the shear stress transformed austenite to martensite, and the hardness of specimens increased and the wear resistance of as-cast ductile cast iron was improved.
基金Supported by the National Natural Science Foundation of China(11102139,11472195)the Natural Science Foundation of Hubei Province of China(2014CFB713)
文摘Through molecular dynamics(MD) simulation, the dependencies of temperature, grain size and strain rate on the mechanical properties were studied. The simulation results demonstrated that the strain rate from 0.05 to 2 ns–1 affected the Young's modulus of nickel nanowires slightly, whereas the yield stress increased. The Young's modulus decreased approximately linearly; however, the yield stress firstly increased and subsequently dropped as the temperature increased. The Young's modulus and yield stress increased as the mean grain size increased from 2.66 to 6.72 nm. Moreover, certain efforts have been made in the microstructure evolution with mechanical properties association under uniaxial tension. Certain phenomena such as the formation of twin structures, which were found in nanowires with larger grain size at higher strain rate and lower temperature, as well as the movement of grain boundaries and dislocation, were detected and discussed in detail. The results demonstrated that the plastic deformation was mainly accommodated by the motion of grain boundaries for smaller grain size. However, for larger grain size, the formations of stacking faults and twins were the main mechanisms of plastic deformation in the polycrystalline nickel nanowire.
基金financial support of the project from the National Natural Science Foundation of China(No.51405392)Specialized Research Fund for the Doctoral Program of Higher Education(No.20136102120022)Hong Kong Scholar Program(No.XJ2016043)
文摘7085-T7452 plates with a thickness of 12 mm were welded by conventional single side and bobbin tool friction stir welding (SS-FSW and BB-FSW, respectively) at different welding parameters. The temperature distribution, microstructure evolution and mechanical properties of joints along the thickness direction were investigated, and digital image correlation (DIC) was utilized to evaluate quantitatively the deformation of different zones during tensile tests. The results indicated that heat-affected zone (HAZ), the local softening region, was responsible for the early plastic deformation and also the fracture location for SS-FSW samples, while a rapid fracture was observed in weld nugget zone (WNZ) before yield behavior for all BB-FSW specimens. The ultimate tensile strength (UTS) of SS-FSW joints presented the highest value of 410 MPa, 82% of the base material, at a rotational speed of 300 rpm and welding speed of 60 mm/min, much higher than that of BB-FSW joints, with a joint efficiency of only 47%. This should be attributed to the Lazy S defect produced by a larger extent of heat input during the BB-FSW process, The whole joint exhibited a much higher elongation than the slices. Scanning electron microscopic (SEM) analysis of the fracture morphologies showed that joints failed through ductile fracture for SS-FSW and brittle fracture for BB-FSW.
基金Item Sponsored by Research Fund for the Central Universities of China(N130607002)National Natural Science Foundation of China(51174057,51274062)Research Fund for the Doctoral Program of Higher Education of China(20130042110040)
文摘Microstructural evolution and mechanical properties of cryogenic rolled Fe-36Ni steel were investigated. The annealed Fe-36Ni steel was rolled at cryogenic temperature( 123-173 K) with 20%- 90% rolling reduction in thickness.The deformation process was accompanied by twinning at cryogenic temperature,and the mean thickness of deformation twins was about 200 nm with 20% rolling reduction. When the rolling reduction was above 40%,twinning was suppressed due to the stress concentration in the tested steel. Deformation microstructure of Fe-36Ni steel consisted of both twin boundaries and dislocations by cryogenic rolling( CR),while it only contained dislocations after rolling at room temperature( RT). The tensile strength of Fe-36Ni steel was improved to 930 MPa after 90% reduction at cryogenic temperature,while the tensile strength after 90% reduction at RT was only 760 MPa. More dislocations could be produced as the nucleation sites of recrystallization during CR process.
文摘The microstructure evolution and impact-toughness variation of heat-affected zone(HAZ)in X80 highstrain pipeline steel were investigated via a welding thermal-simulation technique,Charpy impact tests,and scanning electron microscopy observations under different welding heat inputs and peak temperatures.The results indicate that when heat input was between 17 and 25kJ·cm^(-1),the coarse-grained heat-affected zone showed improved impact toughness.When the heat input was increased further,the martensite-austenite(M-A)islands transformed from fine lath into a massive block.Therefore,impact toughness was substantially reduced.When the heat input was 20kJ·cm^(-1) and the peak temperature of the first thermal cycle was between 900 and 1300°C,a higher impact toughness was obtained.When heat input was 20kJ·cm^(-1) and the peak temperature of the first thermal cycle was 1300°C,the impact toughness value at the second peak temperature of 900°C was higher than that at the second peak temperature of 800°C because of grain refining and uniformly dispersed M-A constituents in the matrix of bainite.
基金financial support obtained from the Science and Engineering Research Board,Department of Science & Technology,Government of India(SB/S3/ME/0044/2013)Sponsored Research and Industrial Consultancy,Indian Institute of Technology Kharagpur,India(GAF)
文摘The present work aims to compare the amorphous phase forming ability of ternary and quaternary Al based alloys (Al86Ni8Y6, Al86GNi6Y6Co2, Al86NigLa6 and Al86Ni8Y45La15) synthesized via mechanical alloying by varying the composition, i.e. fully or partially replacing rare earth (RE) and transition metal (TM) elements based on similar atomic radii and coordination number. X-ray diffraction and high resolution transmission electron microscopy study revealed that the amorphization process occurred through formation of various intermetallic phases and nanocrystalline FCC Al. Fully amorphous phase was obtained for the alloys not containing lanthanum, whereas the other alloys containing La showed partial amorphization with reappearance of intermetallic phases attributed to mechanical crystallization. Differential scanning calorimetry study confirmed better thermal stability with wider transformation temperature for the alloys without La.