The degradation of Mg alloys relates to the service performance of Mg alloy biodegradable implants.In order to investigate the degradation behavior of Mg alloys as vascular stent materials in the near service environm...The degradation of Mg alloys relates to the service performance of Mg alloy biodegradable implants.In order to investigate the degradation behavior of Mg alloys as vascular stent materials in the near service environment,the hot-extruded fine-grained Mg-Zn-Y-Nd alloy microtubes,which are employed to manufacture vascular stents,were tested under radial compressive stress in the dynamic Hanks'Balanced Salt Solution(HBSS).The results revealed that the high flow rate accelerates the degradation of Mg alloy microtubes and its degradation is sensitive to radial compressive stress.These results contribute to understanding the service performance of Mg alloys as vascular stent materials.展开更多
This paper reports that pure hexagonal aluminium nitride microtubes and nanowires growing along the [0001] direction have been successfully synthesized by directly reacting AlCl3 with NaN3 at low temperature (450℃)...This paper reports that pure hexagonal aluminium nitride microtubes and nanowires growing along the [0001] direction have been successfully synthesized by directly reacting AlCl3 with NaN3 at low temperature (450℃) under condition of non-solvent system. The grey-white powder of reacting product was characterized by high-resolution transmission electron microscope (HRTEM), which shows that the powder is long straight-wire morphology with outer diameter from 40nm to 300 nm and length up to several micrometres. The results of both electron diffraction (ED) and x-ray diffraction (XRD) indicate that the AlN microtubes have a pure hexagonal monocrystal tubular structure with the combination of the curled AlN nanobelts. Room-temperature photoluminescence spectrum of the synthesized sample showed an emission peak, which is closely related to the small size of the microtubes.展开更多
The deviation of flow characteristics from the predictions of the conventional theory for microtubes was attrib- uted to the change of fluid viscosity resulted from the interactions between the molecules on solid wall...The deviation of flow characteristics from the predictions of the conventional theory for microtubes was attrib- uted to the change of fluid viscosity resulted from the interactions between the molecules on solid wall and in fluid. The degree of this departure is dependent on the microtubes materials. A concept of equivalent thickness with which conventional theory can be used to predict the flow in microtubes without modifying the fluid viscosity was put forward. The values of equivalent thickness for fused silica and stainless steel materials were determined as 1.8 μm and 1.5 μm, respectively, by repeated numeri- cal simulation.展开更多
Magnesium(Mg)alloys are promising materials for cardiovascular stent applications due to their good biocompatibility and biodegradability.However,in vitro and in vivo corrosion tests reveal that Mg alloy stents suffer...Magnesium(Mg)alloys are promising materials for cardiovascular stent applications due to their good biocompatibility and biodegradability.However,in vitro and in vivo corrosion tests reveal that Mg alloy stents suffer from a rapid corrosion rate and severe localized corrosion,which is limiting their widespread application.To solve the problem of uneven degradation of stents,a HTHE(long-time and high-temperature heat treatment,large-reduction-ratio hot extrusion)process is used to manufacture Mg-Zn-Y-Nd alloy microtubes in this study.The heat treatment is to dissolve alloying elements and reduce the size of SPPs,and the hot extrusion is to acquire fine-grained and strongly textured microtubes.The microstructural characterization shows that coarse second phases in as-cast alloy are refined and uniformly distributed in matrix of microtubes.After hot extrusion,microtubes show strong texture with basal plain oriented parallel to the longitudinal section(LS).The corrosion testing indicates that severe localized corrosion occurs on the cross section(CS)while localized corrosion is alleviated on the LS.Based on the different corrosion properties of the LS and CS,HTHEed microtubes are promising for solving the problems of rapid corrosion rate and severe localized corrosion of Mg alloy stents.展开更多
For efficient solar energy conversion,the morphology engineering of hollow graphitic carbon nitride(gC3 N4)is one of the promising approachs benefiting from abundant exposed active sites and short photocarrier transpo...For efficient solar energy conversion,the morphology engineering of hollow graphitic carbon nitride(gC3 N4)is one of the promising approachs benefiting from abundant exposed active sites and short photocarrier transport distances,but is difficult to control on account of easy structural collapse.Herein,a facile supramolecular electrostatic self-assembly strategy has been developed for the first time to fabricate mesoporous thin-walled g-C3N4 microtubes(mtw-CNT)with shell thickness of ca.13 nm.The morphological control of g-C3N4 enhances specific surface area by 12 times,induces stronger optical absorption,widens bandgap by 0.18 e V,improves photocurrent density by 2.5 times,and prolongs lifetimes of charge carriers from bulk to surface,compared with those of bulk g-C3N4.As a consequence,the transformed g-C3N4 exhibits the optimum photocatalytic H2-production rate of 3.99 mmol·h^-1·g^-1(λ>420 nm)with remarkable apparent quantum efficiency of 8.7%(λ=420±15 nm)and long-term stability.Moreover,mtw-CNT also achieves high photocatalytic CO2-to-CO selectivity of 96%(λ>420 nm),much better than those on the most previously reported porous g-C3N4 photocatalysts prepared by the conventional hard-templating and soft-templating methods.展开更多
To fully exploit the superiority of tubular structures,in this study,we systematically explore the optimal preparation conditions for Ni/Co_(3)O_(4),including cation species and content,additive species and content,an...To fully exploit the superiority of tubular structures,in this study,we systematically explore the optimal preparation conditions for Ni/Co_(3)O_(4),including cation species and content,additive species and content,and anion species.Our results reveal that the formation of an initial cobalt nickel acetate hydroxide prism is the key factor and directly affects the final microtubular structure.Moreover,P is subsequently doped into the Ni/Co_(3)O_(4)lattice to increase the M^(3+)/M^(2+)molar ratio(M=Co and Ni),promote reaction kinetics,and optimize electronic structure.Consequently,the oxygen evolution reaction performance of P-doped tubular Ni/Co_(3)O_(4)is significantly higher than that of undoped Ni/Co_(3)O_(4)and the state-of-the-art RuO_(2)electrocatalyst.展开更多
Doping of foreign atoms and construction of unique structures are considered as effective approaches to design high-activity and strongdurability electrocatalysts.Herein,we report Fe-doped nickel hydroxide carbonate h...Doping of foreign atoms and construction of unique structures are considered as effective approaches to design high-activity and strongdurability electrocatalysts.Herein,we report Fe-doped nickel hydroxide carbonate hierarchical microtubes with Ag nanoparticles(denoted Ag/NiFeHC HMTs)through hydrolysis precipitation process.Experimental tests and density functional theory calculations reveal that Fe doping can tune the electron configuration to enhance the conductivity,markedly improve the electrochemical surface area to expose more active sites,and act as reactive centers to lower the free energy of the rate determination step.In addition,the unique hierarchical structure can also offer active sites and excellent cycling stability.Benefitting from these advantages,the as-obtained Ag/NiFeHC HMTs show excellent oxygen evolution reaction activity,with an overpotential of 208 mV at 10 mA cm^(−2)in 1.0M KOH.Also,it could achieve long-term stability at a current density of 20 mA cm^(−2)for 24 h.展开更多
It is obvious that the pressure gradient along the axial direction in a pipe flow keeps constant according to the Hagen-Poiseuille equation. However, recent experiments indicated that the distribution of the pressure ...It is obvious that the pressure gradient along the axial direction in a pipe flow keeps constant according to the Hagen-Poiseuille equation. However, recent experiments indicated that the distribution of the pressure seemed no longer linear for liquid flows in microtubes driven by high pressure (1-30MPa). Based on H-P equation with slip boundary condition and Bridgman's relation of viscosity vs. static pressure, the nonlinear distribution of pressure along the axial direction is analyzed in this paper. The revised standard Poiseuille number with the effect of pressure-dependent viscosity taken into account agrees well with the experimental results. Therefore, the dependence of the viscosity on the pressure is one of the dominating factors under high driven pressure, and is represented by an important property coefficient α of the liquid.展开更多
The fabrication of superhydrophobic surfaces and the studies on water flow characteristics therein are of great significance to many industrial areas as well as to science and technology development. Experiments were ...The fabrication of superhydrophobic surfaces and the studies on water flow characteristics therein are of great significance to many industrial areas as well as to science and technology development. Experiments were car- ried out to investigate slip characteristics of water flowing in circular superhydrophobic microtubes within lam- inar flow region. The superhydrophobic microtubes of stainless steel were fabricated with chemical etching- fluorination treatment. An experimental setup was designed to measure the pressure drop as function of water flow rate. For comparison, superhydrophilic tubes were also tested. Poiseuille number Po was found to be smaller for the superhydrophobic microtubes than that for superhydrophilic ones. The pressure drop reduc- tion ranges from 8% to 31%. It decreases with increasing Reynolds number when Re 〈 900, owing to the transition from Cassie state to Wenze] state. However, it is almost unchanged with further increasing Re after Re 〉 900. The slip length in superhydrophobic microtubes also exhibits a Reynolds number dependence similarly to the pressure drop reduction. The relation between slip length and Darcy friction factor is theoretically analyzed with consideration of surface roughness effect, which was testified with the experimental results.展开更多
An expeditionary study of the area of the alleged impact event that occurred on 3.08.1993 in the area of the Lower Konkuli River(southeast of the Aldan Highlands,Lurikan Range,Russia)was carried out.According to the m...An expeditionary study of the area of the alleged impact event that occurred on 3.08.1993 in the area of the Lower Konkuli River(southeast of the Aldan Highlands,Lurikan Range,Russia)was carried out.According to the materials of remote sensing,the places of collision with the earth of a cosmic body are determined.In the area of the impact of the shock wave on the Earth’s surface,peat samples were selected,the micro probe analysis of which showed the presence of a cosmogenic substance in concentrations 6-8 times higher than the background.Silicate and magnetite micro spheres,native iron,moissanite,and carbon micro tubes coated with a film consisting of pure nickel were found.Of particular interest were the findings of specific Ni film micro structures that allow us to make an assumption about the cometary nature of the Uchur cosmic body.Most researchers associate the observed flights of fireballs with the subsequent fall of meteorites.Researchers are trying to find the massive body of the fallen space body.However,often,even after many years of searching,a massive cosmic body cannot be found.This happened when studying the site of the fall of the Tunguska cosmic body.In this case,it remains to be assumed that the cosmic body contained microscopic dust particles.The structure and composition of such particles can only be studied using microscopic research methods.When studying the Uchur cosmic body,the authors concluded that it could be of a cometary nature due to the findings of specific particles-thin films of pure nickel on the surface of plant remains of terrestrial origin.This hypothesis arose from the recent discovery of atomic nickel vapors in comets.展开更多
基金the financial support of the National Key Research and Development Program of China(2018YFC1106703)the Key Projects of the Joint Fund of the National Natural Science Foundation of China(U1804251)。
文摘The degradation of Mg alloys relates to the service performance of Mg alloy biodegradable implants.In order to investigate the degradation behavior of Mg alloys as vascular stent materials in the near service environment,the hot-extruded fine-grained Mg-Zn-Y-Nd alloy microtubes,which are employed to manufacture vascular stents,were tested under radial compressive stress in the dynamic Hanks'Balanced Salt Solution(HBSS).The results revealed that the high flow rate accelerates the degradation of Mg alloy microtubes and its degradation is sensitive to radial compressive stress.These results contribute to understanding the service performance of Mg alloys as vascular stent materials.
基金Project supported by the National Natural Science Foundation of China (Grant No 10474078) and the Science Foundation of the Education 0ffice of Shanxi Province, China.
文摘This paper reports that pure hexagonal aluminium nitride microtubes and nanowires growing along the [0001] direction have been successfully synthesized by directly reacting AlCl3 with NaN3 at low temperature (450℃) under condition of non-solvent system. The grey-white powder of reacting product was characterized by high-resolution transmission electron microscope (HRTEM), which shows that the powder is long straight-wire morphology with outer diameter from 40nm to 300 nm and length up to several micrometres. The results of both electron diffraction (ED) and x-ray diffraction (XRD) indicate that the AlN microtubes have a pure hexagonal monocrystal tubular structure with the combination of the curled AlN nanobelts. Room-temperature photoluminescence spectrum of the synthesized sample showed an emission peak, which is closely related to the small size of the microtubes.
基金Project (No. 20299030) supported by the National Natural ScienceFoundation of China
文摘The deviation of flow characteristics from the predictions of the conventional theory for microtubes was attrib- uted to the change of fluid viscosity resulted from the interactions between the molecules on solid wall and in fluid. The degree of this departure is dependent on the microtubes materials. A concept of equivalent thickness with which conventional theory can be used to predict the flow in microtubes without modifying the fluid viscosity was put forward. The values of equivalent thickness for fused silica and stainless steel materials were determined as 1.8 μm and 1.5 μm, respectively, by repeated numeri- cal simulation.
基金financial support of Key Projects of the Joint Fund of the National Natural Science Foundation of China(Grant No:U1804251)the National Key Research and Development Program of China(2016YFC1102403,2018YFC1106703 and 2017YFB0702504)+1 种基金China Scholarship Council for the award of fellowship and funding(No.201707040058)China Scholarship Council for the award of fellowship and funding(No.201607040051)。
文摘Magnesium(Mg)alloys are promising materials for cardiovascular stent applications due to their good biocompatibility and biodegradability.However,in vitro and in vivo corrosion tests reveal that Mg alloy stents suffer from a rapid corrosion rate and severe localized corrosion,which is limiting their widespread application.To solve the problem of uneven degradation of stents,a HTHE(long-time and high-temperature heat treatment,large-reduction-ratio hot extrusion)process is used to manufacture Mg-Zn-Y-Nd alloy microtubes in this study.The heat treatment is to dissolve alloying elements and reduce the size of SPPs,and the hot extrusion is to acquire fine-grained and strongly textured microtubes.The microstructural characterization shows that coarse second phases in as-cast alloy are refined and uniformly distributed in matrix of microtubes.After hot extrusion,microtubes show strong texture with basal plain oriented parallel to the longitudinal section(LS).The corrosion testing indicates that severe localized corrosion occurs on the cross section(CS)while localized corrosion is alleviated on the LS.Based on the different corrosion properties of the LS and CS,HTHEed microtubes are promising for solving the problems of rapid corrosion rate and severe localized corrosion of Mg alloy stents.
基金financially supported by the National Natural Science Foundation of China(21902051)the Natural Science Foundation of Fujian Province(2017J01014 and 2019J05090)the Graphene Power and Composite Research Center of Fujian Province(2017H2001)。
文摘For efficient solar energy conversion,the morphology engineering of hollow graphitic carbon nitride(gC3 N4)is one of the promising approachs benefiting from abundant exposed active sites and short photocarrier transport distances,but is difficult to control on account of easy structural collapse.Herein,a facile supramolecular electrostatic self-assembly strategy has been developed for the first time to fabricate mesoporous thin-walled g-C3N4 microtubes(mtw-CNT)with shell thickness of ca.13 nm.The morphological control of g-C3N4 enhances specific surface area by 12 times,induces stronger optical absorption,widens bandgap by 0.18 e V,improves photocurrent density by 2.5 times,and prolongs lifetimes of charge carriers from bulk to surface,compared with those of bulk g-C3N4.As a consequence,the transformed g-C3N4 exhibits the optimum photocatalytic H2-production rate of 3.99 mmol·h^-1·g^-1(λ>420 nm)with remarkable apparent quantum efficiency of 8.7%(λ=420±15 nm)and long-term stability.Moreover,mtw-CNT also achieves high photocatalytic CO2-to-CO selectivity of 96%(λ>420 nm),much better than those on the most previously reported porous g-C3N4 photocatalysts prepared by the conventional hard-templating and soft-templating methods.
文摘To fully exploit the superiority of tubular structures,in this study,we systematically explore the optimal preparation conditions for Ni/Co_(3)O_(4),including cation species and content,additive species and content,and anion species.Our results reveal that the formation of an initial cobalt nickel acetate hydroxide prism is the key factor and directly affects the final microtubular structure.Moreover,P is subsequently doped into the Ni/Co_(3)O_(4)lattice to increase the M^(3+)/M^(2+)molar ratio(M=Co and Ni),promote reaction kinetics,and optimize electronic structure.Consequently,the oxygen evolution reaction performance of P-doped tubular Ni/Co_(3)O_(4)is significantly higher than that of undoped Ni/Co_(3)O_(4)and the state-of-the-art RuO_(2)electrocatalyst.
基金Zhejiang Provincial Natural Science Foundation of China,Grant/Award Number:LQ20B010002。
文摘Doping of foreign atoms and construction of unique structures are considered as effective approaches to design high-activity and strongdurability electrocatalysts.Herein,we report Fe-doped nickel hydroxide carbonate hierarchical microtubes with Ag nanoparticles(denoted Ag/NiFeHC HMTs)through hydrolysis precipitation process.Experimental tests and density functional theory calculations reveal that Fe doping can tune the electron configuration to enhance the conductivity,markedly improve the electrochemical surface area to expose more active sites,and act as reactive centers to lower the free energy of the rate determination step.In addition,the unique hierarchical structure can also offer active sites and excellent cycling stability.Benefitting from these advantages,the as-obtained Ag/NiFeHC HMTs show excellent oxygen evolution reaction activity,with an overpotential of 208 mV at 10 mA cm^(−2)in 1.0M KOH.Also,it could achieve long-term stability at a current density of 20 mA cm^(−2)for 24 h.
基金The project supported by the Chinese Academy of Sciences Major Innovation Project (KJCX2-SW-L2)the National Natural Science Foundation of China (10272107)The English text was polished by Yunming Chen
文摘It is obvious that the pressure gradient along the axial direction in a pipe flow keeps constant according to the Hagen-Poiseuille equation. However, recent experiments indicated that the distribution of the pressure seemed no longer linear for liquid flows in microtubes driven by high pressure (1-30MPa). Based on H-P equation with slip boundary condition and Bridgman's relation of viscosity vs. static pressure, the nonlinear distribution of pressure along the axial direction is analyzed in this paper. The revised standard Poiseuille number with the effect of pressure-dependent viscosity taken into account agrees well with the experimental results. Therefore, the dependence of the viscosity on the pressure is one of the dominating factors under high driven pressure, and is represented by an important property coefficient α of the liquid.
基金the National Natural Science Foundation of China(20476014,51376030)
文摘The fabrication of superhydrophobic surfaces and the studies on water flow characteristics therein are of great significance to many industrial areas as well as to science and technology development. Experiments were car- ried out to investigate slip characteristics of water flowing in circular superhydrophobic microtubes within lam- inar flow region. The superhydrophobic microtubes of stainless steel were fabricated with chemical etching- fluorination treatment. An experimental setup was designed to measure the pressure drop as function of water flow rate. For comparison, superhydrophilic tubes were also tested. Poiseuille number Po was found to be smaller for the superhydrophobic microtubes than that for superhydrophilic ones. The pressure drop reduc- tion ranges from 8% to 31%. It decreases with increasing Reynolds number when Re 〈 900, owing to the transition from Cassie state to Wenze] state. However, it is almost unchanged with further increasing Re after Re 〉 900. The slip length in superhydrophobic microtubes also exhibits a Reynolds number dependence similarly to the pressure drop reduction. The relation between slip length and Darcy friction factor is theoretically analyzed with consideration of surface roughness effect, which was testified with the experimental results.
基金The work was carried out within the framework of the state tasks of the IPE RAS(project no.FMWU-2022-0026,project no.FMWU-2022-0027)IVMiMG SO RAN(project no.0251-2021-0004).
文摘An expeditionary study of the area of the alleged impact event that occurred on 3.08.1993 in the area of the Lower Konkuli River(southeast of the Aldan Highlands,Lurikan Range,Russia)was carried out.According to the materials of remote sensing,the places of collision with the earth of a cosmic body are determined.In the area of the impact of the shock wave on the Earth’s surface,peat samples were selected,the micro probe analysis of which showed the presence of a cosmogenic substance in concentrations 6-8 times higher than the background.Silicate and magnetite micro spheres,native iron,moissanite,and carbon micro tubes coated with a film consisting of pure nickel were found.Of particular interest were the findings of specific Ni film micro structures that allow us to make an assumption about the cometary nature of the Uchur cosmic body.Most researchers associate the observed flights of fireballs with the subsequent fall of meteorites.Researchers are trying to find the massive body of the fallen space body.However,often,even after many years of searching,a massive cosmic body cannot be found.This happened when studying the site of the fall of the Tunguska cosmic body.In this case,it remains to be assumed that the cosmic body contained microscopic dust particles.The structure and composition of such particles can only be studied using microscopic research methods.When studying the Uchur cosmic body,the authors concluded that it could be of a cometary nature due to the findings of specific particles-thin films of pure nickel on the surface of plant remains of terrestrial origin.This hypothesis arose from the recent discovery of atomic nickel vapors in comets.