This paper describes mass-based energy phase-space projection of microwave-assisted synthesis of transition metals (zinc oxide, palladium, silver, platinum, and gold) nanostructures. The projection uses process energy...This paper describes mass-based energy phase-space projection of microwave-assisted synthesis of transition metals (zinc oxide, palladium, silver, platinum, and gold) nanostructures. The projection uses process energy budget (measured in kJ) on the horizontal axes and process density (measured in kJg−1) on the vertical axes. These two axes allow both mass usage efficiency (Environmental-Factor) and energy efficiency to be evaluated for a range of microwave applicator and metal synthesis. The metrics are allied to the: second, sixth and eleventh principle of the twelve principle of Green Chemistry. This analytical approach to microwave synthesis (widely considered as a useful Green Chemistry energy source) allows a quantified dynamic environmental quotient to be given to renewable plant-based biomass associated with the reduction of the metal precursors. Thus allowing a degree of quantification of claimed “eco-friendly” and “sustainable” synthesis with regard to waste production and energy usage.展开更多
Process parameters of microwave assisted extraction (MAE) of the polysaccharides from pumpkin viz. extraction temperature, time and liquid-solid ratio were studied by using single factor and response surface methodo...Process parameters of microwave assisted extraction (MAE) of the polysaccharides from pumpkin viz. extraction temperature, time and liquid-solid ratio were studied by using single factor and response surface methodology method. The results showed that the liquid-solid ratio was the most important factor in polysaccharides yield, followed the extraction temperature was the least important factor. The optimum microwave assisted extraction co by ndi extraction time, and tions for the highest polysaccharides yield from pumpkin (16.76%-4-0.38%) were obtained by using the response surface methodology with extraction time of 29 min, an extraction temperature of 79 ℃ and a liquid-solid ratio of 22 mL·g^-1. Validation experiment result well agreed with predicted value.展开更多
Demand is growing for explosive-free rock breakage systems for civil and mining engineering, and space industry applications. This paper highlights the work being undertaken in the Geomechanics Laboratory of Mc Gill U...Demand is growing for explosive-free rock breakage systems for civil and mining engineering, and space industry applications. This paper highlights the work being undertaken in the Geomechanics Laboratory of Mc Gill University to make a real application of microwave-assisted mechanical rock breakage to fullface tunneling machines and drilling. Comprehensive laboratory tests investigated the effect of microwave radiation on temperature profiles and strength reduction in hard rocks(norite, granite, and basalt)for a range of exposure times and microwave power levels. The heating rate on the surface of the rock specimens linearly decreased with distance between the sample and the microwave antenna, regardless of microwave power level and exposure time. Tensile and uniaxial compressive strengths were reduced with increasing exposure time and power level. Scanning electron micrographs(SEMs) highlighted fracture development in treated basalt. It was concluded that the microwave power level has a strong positive influence on the amount of heat damage induced to the rock surface. Numerical simulations of electric field intensity and wave propagation conducted with COMSOL Multiphysics~ software generated temperature profiles that were in close agreement with experimental results.展开更多
By using microwave-assisted co-precipitation in aqueous phase, adding surface activation agent PEG-6000 into the mixture of InCl3 solution and SnCl4 solution, and dropping the ammonia solution with the density (volume...By using microwave-assisted co-precipitation in aqueous phase, adding surface activation agent PEG-6000 into the mixture of InCl3 solution and SnCl4 solution, and dropping the ammonia solution with the density (volume ratio) of 1-0 to 1-4, ITO precursor was prepared at different reaction system temperatures of 35 ℃-85 ℃, then ITO nano-powder was obtained after it was calcinated at 800 ℃ for 1 h. The morphology of ITO nano-powder was characterized by SEM and its electrical conductivity was determined by conductivity meter. The effects of different temperatures and ammonia concentration in microwave-assisted reaction system on its morphology and electric conductivity were discussed. The experimental results indicate that with the dilution of the ammonia solution or the rise of reacting system temperature, the morphology of ITO particles is transformed from spherical to rod-like one with the decline of its electric conductivity. And the electric conductivity of ITO nano-powders with spherical morphology is higher than that of ITO nano-powders with rod-like morphology.展开更多
The property of extraction solution is an important factor influencing the extraction efficiency. In the present work, the effect of the property of solution on extraction of GA was studied, which including the concen...The property of extraction solution is an important factor influencing the extraction efficiency. In the present work, the effect of the property of solution on extraction of GA was studied, which including the concentration of ethanol, ammonia and cation (M+), pH of extraction solution, different kinds of organic solvent etc. The results show that 50%-60%(v/v) ethanol can reach high percentage extraction of GA. If 1% (v/v) ammonia solution was added into 60%(v/v) ethanol, the percentage extraction can be increased from 2.0% to 2.31%. Without ammonia, 50mmol/L [M+] (M+ = K+, NH4+) was added into 60%(v/v) ethanol, percentage extraction of GA can reach about 2.26%. If pH of solution (60% ethanol) was adjust to pH=4.0, it can reach high percentage extraction. If pH of solution (60% ethanol + 50mmol [M+], pH=6.1) was adjust tO PH=4.0, especially M+ is K+ or NH4+, it can reach almost same extraction efficiency as that of 1% ammonia solution + 60% ethanol, and the operation environment can be greatly improved.展开更多
Eu^2+-doped Ba3Si6012N2 green phosphors were prepared by microwave assisted sintering method at 1275℃ for 4 h, while the counterparts using conventional solid-state reaction method were synthesized at temperature hi...Eu^2+-doped Ba3Si6012N2 green phosphors were prepared by microwave assisted sintering method at 1275℃ for 4 h, while the counterparts using conventional solid-state reaction method were synthesized at temperature higher than 1300℃ and for to 10 h. Microwave assisted sintering could reduce the activation energy and enhance the diffu- sion rate, thus greatly improved the sintering. Moreover, the influence of Si3N4 content on phase formation, morphol- ogy, absorption, and quantum efficiency, and photoluminescence properties of phosphors were studied. As a result, the Ba3Si6OI2N2:Eu^2+ samples sintered by microwave assisted sintering method have a higher phase purity and photo- luminescence intensity under ultraviolet excitation as compared with samples sintered in the conventional tube furnace The proposed method is a potential preparation method for the oxynitride phosphors with strong photoluminescence and high phase purity.展开更多
Lignocellulosic materials are promising alternative feedstocks for bioethanol production. However, the recalcitrant nature of lignocellulosic biomass necessitates an efficient pretreatment pretreatment step to improve...Lignocellulosic materials are promising alternative feedstocks for bioethanol production. However, the recalcitrant nature of lignocellulosic biomass necessitates an efficient pretreatment pretreatment step to improve the yield of fermentable sugars and maximizing the enzymatic hydrolysis efficiency. Microwave pretreatment may be a good alternative as it can reduce the pretreatment time and improve the enzymatic activity during hydrolysis. The overall goal of this paper is to expand the current state of knowledge on microwave-based pretreatment of lignocellulosic biomass and microwave assisted enzymatic reaction or Microwave Irradiation-Enzyme Coupling Catalysis (MIECC). In the present study, a comparison of microwave assisted alkali pretreatment was tried using Oil Palm empty fruit bunch. The microwave assisted alkali pretreatment of EFB using NaOH, significantly improved the enzymatic saccharification of EFB by removing more lignin and hemicellulose and increasing its accessibility to hydrolytic enzymes. The results showed that the optimum pretreatment condition was 3% (w/v) NaOH at 180 W for 12 minutes with the optimum component loss of lignin and holocellulose of about 74% and 24.5% respectively. The subsequent enzymatic saccharification of EFB pretreated by microwave assisted NaOH (3% w/v);resulted in 411 mg of reducing sugar per gram EFB at cellulose enzyme dosage of 20 FPU. The overall enhancement by the microwave treatment during the microwave assisted alkali pretreatment and microwave assisted enzymatic hydrolysis was 5.8 fold. The present study has highlighted the importance of well controlled microwave assisted enzymatic reaction to enhance the overall reaction rate of the process.展开更多
A comparison between conventional pyrolysis and a novel developed low-temperature microwave-assisted pyrolysis methodology has been performed for the valorisation of a range of biomass feedstocks including waste resid...A comparison between conventional pyrolysis and a novel developed low-temperature microwave-assisted pyrolysis methodology has been performed for the valorisation of a range of biomass feedstocks including waste residues. Microwave pyrolysis was found to efficiently deliver comparable evolution of bio-gases in the system as compared with conventional pyrolysis at significantly reduced temperatures (120-180 ℃vs 250-400 ℃). The gas obtained from microwave-assisted pyrolysis was found to contain CO2, CH4 and CO as major components as well展开更多
Three microwave-assisted extraction(MAE) procedures were studied. The first procedure was household microwave oven dynamic extraction(HMODE). The second procedure was special microwave oven bath extraction(SMOBE). The...Three microwave-assisted extraction(MAE) procedures were studied. The first procedure was household microwave oven dynamic extraction(HMODE). The second procedure was special microwave oven bath extraction(SMOBE). The third procedure was microwave resonant cavity dynamic extraction(MRCDE). The results obtained by the three microwave-assisted extraction procedures were compared with those obtained by using traditional Soxhlet extraction. The results indicate that the MAE not only took a shorter time, but also simplified the procedure, and made the extraction a higher yield. At the same time the results obtained by the three MAE procedures were also compared with each other.展开更多
High density ZnO-nanorod arrays(rod length 1.59μm)were successfully synthesized via a microwave-assisted solution-phase method using zinc chloride and ammonia solution as reactants.The influence of concentration of a...High density ZnO-nanorod arrays(rod length 1.59μm)were successfully synthesized via a microwave-assisted solution-phase method using zinc chloride and ammonia solution as reactants.The influence of concentration of ammonia solution, work power,and microwave irradiation time on the morphology and size of final products was carefully investigated.The crystal structure,chemical composition and morphologies of final products were characterized using X-ray powder diffraction(XRD), scanning electron microscopy(SEM)and photoluminescence(PL).The as-synthesized ZnO is composed of single crystalline and possesses three photoluminescence emissions centered at 400,469 and 534.5 nm,respectively.展开更多
In this work,a fast and efficient microwave-assisted extraction(MAE) method was developed to extract main bioactive alkaloids from lotus plumue.To optimize MAE conditions,three main factors were selected using univari...In this work,a fast and efficient microwave-assisted extraction(MAE) method was developed to extract main bioactive alkaloids from lotus plumue.To optimize MAE conditions,three main factors were selected using univariate approach experiments,and then central composite design(CCD).The optimal extraction conditions were as follows:methanol concentration of 65%,microwave power of 200 W,and extraction time of 260 s.A high performance liquid chromatography–diode array detector(HPLC–DAD) method was established to quantitatively analyze these phytochemicals in different lotus plumule samples and in different part of lotus.Chromatographic separation was carried out on an Agilent Zorbax Extend-C_(18) column(4.6 mm×150 mm,3.5 μm).Gradient elution was applied with the mobile phase constituted with 0.1% triethylamine in water(A)and acetonitrile(B):40%-70% B at 0-8 min,70%-100% B at 8–9 min,100% B for 2 min,and then equilibrated with 40% B for 2 min.展开更多
A Pt/graphene‐TiO2catalyst was prepared by a microwave‐assisted solvothermal method and was characterized by X‐ray diffraction,scanning electron microscopy,transmission electron microscopy,cyclic voltammetry,and li...A Pt/graphene‐TiO2catalyst was prepared by a microwave‐assisted solvothermal method and was characterized by X‐ray diffraction,scanning electron microscopy,transmission electron microscopy,cyclic voltammetry,and linear sweep voltammetry.The cubic TiO2particles were approximately60nm in size and were distributed on the graphene sheets.The Pt nanoparticles were uniformly distributed between the TiO2particles and the graphene sheet.The catalyst exhibited a significant improvement in activity and stability towards the oxygen reduction reaction compared with Pt/C,which resulted from the high electronic conductivity of graphene and strong metal‐support interactions.展开更多
This study was aimed at evaluating the physicochemical properties and oxidation stability of castor oil using microwave-assisted solvent extraction(MAE). MAE was performed using 5% ethanol in hexane as solvent at diff...This study was aimed at evaluating the physicochemical properties and oxidation stability of castor oil using microwave-assisted solvent extraction(MAE). MAE was performed using 5% ethanol in hexane as solvent at different extraction times, power intensities and solvent-to-feed(S/F, ml of solvent to gram of feed) ratios.The process parameters were optimized by statistical approach using historical data design of response surface method(RSM). The oils were characterized for yield, physicochemical properties, dielectric properties and oxidation stability, and comparison was also made with oil extracted using Soxhlet method. Results show that the maximum oil yield of 37% was obtained at 20 min with microwave power intensity of 330 W and S/F ratio of 20. The main fatty acid composition of castor oil is ricinoleic acid. The density, refractive index, dielectric properties and oxidation stability of oils are not affected by the extraction methods and extraction parameters of MAE. However, the MAE-extracted oil is more viscous compared to that by Soxhlet method. With extra caution on oil oxidation, MAE could be a promising solvent extraction method with an 86% less in processing time and a higher yield.展开更多
Poly (lactic acid) (PLA) was synthesized by microwave-assisted ring-opening polymerization of D, L-lactide with stannous octanoate (SnOct(2)) as catalyst. Its weight-average molar mass (M-w) ranged from 39000 to 67000...Poly (lactic acid) (PLA) was synthesized by microwave-assisted ring-opening polymerization of D, L-lactide with stannous octanoate (SnOct(2)) as catalyst. Its weight-average molar mass (M-w) ranged from 39000 to 67000 and the polydispersity index from 1.3 to 1.7. The polymerization rate was much faster than that of the conventional thermal polymerization. A degradation of newly formed PLA in reaction mixture by microwave irradiation was observed.展开更多
A greenness evaluation index and system of microwave-assisted leaching method were established.The effects of the life cycle assessment variables,such as the resource consumption,environment impact,cost,time and quali...A greenness evaluation index and system of microwave-assisted leaching method were established.The effects of the life cycle assessment variables,such as the resource consumption,environment impact,cost,time and quality,were investigated,and the concept of green degree was applied in the production of synthetic rutile.An analytic hierarchy process was utilized to assess matrix of greenness evaluation.The Gauss-Seidel iterative matrix method was employed to solve the assessment matrix and obtain the weights and membership functions of all evaluation indexes.A fuzzy decision-making method was applied to build the greenness evaluation model,and then the scores of green degree in microwave-assisted leaching process was obtained.The greenness evaluation model was applied to the life cycle assessment of the microwave-assisted leaching process.The results show that the microwave-assisted leaching process has advantages over the conventional ones,with respect to energy-consumption,processing time and environmental protection.展开更多
Microwave-assisted extraction was optimized with response surface methodology for HPLC-fluorescence determination of puerarin and daidzein in Radix Puerariae thomsonii.The optimized extraction procedure was achieved b...Microwave-assisted extraction was optimized with response surface methodology for HPLC-fluorescence determination of puerarin and daidzein in Radix Puerariae thomsonii.The optimized extraction procedure was achieved by soaking the sample with 70% methanol(1∶15,v/v)for 30 min,and then microwave irradiation for 11 min at a power of 600 W.Coupling the extraction process with HPLC-fluorescence presented good recovery,satisfactory precision,and good linear relation.Compared with a method from the Chinese Pharmacopoeia,the proposed method enables higher extraction efficiency and more accurate analytical results.It can be of potential value in quality assessment of Radix Puerariae thomsonii medicinal materials.展开更多
Microwave-assisted Kornblum oxidation is proved to be an effective way to obtain aldehyde and ketones from their corresponding chlorides. Under microwave irradiation, not only the reaction time was greatly decreased, ...Microwave-assisted Kornblum oxidation is proved to be an effective way to obtain aldehyde and ketones from their corresponding chlorides. Under microwave irradiation, not only the reaction time was greatly decreased, due to avoiding the by-product, the yield was increased. It is noteworthy that the scope of the method was broadly expanded.展开更多
Copper-catalyzed synthesis of N-aryl anthranilic acid derivatives using effective amination of 2-chloro and 2-bromobenzoic acid under microwave irradiation is reported. Some of the advantages of this method are high c...Copper-catalyzed synthesis of N-aryl anthranilic acid derivatives using effective amination of 2-chloro and 2-bromobenzoic acid under microwave irradiation is reported. Some of the advantages of this method are high chemoselectivity, short reaction times, ease of work up procedure and elimination of the need for acid protection. 2009 Published by Elsevier B.V. on behalf of Chinese Chemical Society.展开更多
This paper summarized application and research advancement of the microwave-assisted extraction in the agriculture, food industry, environmental analytical chemistry, traditional Chinese medicine industry, and so on. ...This paper summarized application and research advancement of the microwave-assisted extraction in the agriculture, food industry, environmental analytical chemistry, traditional Chinese medicine industry, and so on. The microwave-assisted extraction was manifested to be a simple device, wide area of application, high extraction efficiency, good reproducibility and low consumption of agent and time as well as low environmental pollution. At present, industrialization question of the microwave-assisted extraction technology has been attached importance, which will impel the microwave-assisted extraction technology to more development in the future展开更多
Objective:To prepare a novel biodegradable poly(2-hydroxyethylmethacrilate)(pHEMAt hydrogel as tissue engineering scaffold.Methods:The pHEMA hydrogel was synthesized by microwaveassisted polymerization using 2-hydroxy...Objective:To prepare a novel biodegradable poly(2-hydroxyethylmethacrilate)(pHEMAt hydrogel as tissue engineering scaffold.Methods:The pHEMA hydrogel was synthesized by microwaveassisted polymerization using 2-hydroxyethyl methacrylale(IIEMA)as the raw material,potassium persulfate as the initiator,and PCI.X as the cross-linking additive.The hvdrogels was characterized with FTIR and NMR spectroscopy.The physical and chemical properties of the prepared hydrogel were evaluated,and its degradation performance was tested.The cytotoxicity of the optimum composite hydrogel was measured by an MTT assay to confirm the feasibility of its use in tissue engineering.Results:The optimum conditions under which the hydrogel was prepared by microwave-assisted polymerization are as follows:1.5 g cross-linking additive,0.3 g initiator,reaction temperature of 80°C,and microwave power of 800 W.Degradation studies showed good degradation profiles with 75%in 17 days.Additionally,the hydrogels did not elicit any cytotoxic response in in vitro cytotoxic assays.Conclusion:A biodegradable pIIEMA hydrogel was successfully prepared by microwave-assisted polymerization,as confirmed from FTIR and NMR results.The hydrogel shows promising applications in tissue engineering,and its healing ability and biocompatibilily will be evaluated in detail in the future.展开更多
文摘This paper describes mass-based energy phase-space projection of microwave-assisted synthesis of transition metals (zinc oxide, palladium, silver, platinum, and gold) nanostructures. The projection uses process energy budget (measured in kJ) on the horizontal axes and process density (measured in kJg−1) on the vertical axes. These two axes allow both mass usage efficiency (Environmental-Factor) and energy efficiency to be evaluated for a range of microwave applicator and metal synthesis. The metrics are allied to the: second, sixth and eleventh principle of the twelve principle of Green Chemistry. This analytical approach to microwave synthesis (widely considered as a useful Green Chemistry energy source) allows a quantified dynamic environmental quotient to be given to renewable plant-based biomass associated with the reduction of the metal precursors. Thus allowing a degree of quantification of claimed “eco-friendly” and “sustainable” synthesis with regard to waste production and energy usage.
基金Supported by National Natural Science Foundation (31071579)Key Program of Heilongjiang Province Science Foundation (ZP201013)
文摘Process parameters of microwave assisted extraction (MAE) of the polysaccharides from pumpkin viz. extraction temperature, time and liquid-solid ratio were studied by using single factor and response surface methodology method. The results showed that the liquid-solid ratio was the most important factor in polysaccharides yield, followed the extraction temperature was the least important factor. The optimum microwave assisted extraction co by ndi extraction time, and tions for the highest polysaccharides yield from pumpkin (16.76%-4-0.38%) were obtained by using the response surface methodology with extraction time of 29 min, an extraction temperature of 79 ℃ and a liquid-solid ratio of 22 mL·g^-1. Validation experiment result well agreed with predicted value.
基金the Natural Sciences and Engineering Research Council of Canada(NSERC)with the collaboration of IAMGold,Glencore,and Vale Canada,who generously contributed financially to this research project
文摘Demand is growing for explosive-free rock breakage systems for civil and mining engineering, and space industry applications. This paper highlights the work being undertaken in the Geomechanics Laboratory of Mc Gill University to make a real application of microwave-assisted mechanical rock breakage to fullface tunneling machines and drilling. Comprehensive laboratory tests investigated the effect of microwave radiation on temperature profiles and strength reduction in hard rocks(norite, granite, and basalt)for a range of exposure times and microwave power levels. The heating rate on the surface of the rock specimens linearly decreased with distance between the sample and the microwave antenna, regardless of microwave power level and exposure time. Tensile and uniaxial compressive strengths were reduced with increasing exposure time and power level. Scanning electron micrographs(SEMs) highlighted fracture development in treated basalt. It was concluded that the microwave power level has a strong positive influence on the amount of heat damage induced to the rock surface. Numerical simulations of electric field intensity and wave propagation conducted with COMSOL Multiphysics~ software generated temperature profiles that were in close agreement with experimental results.
基金Project (50725416) supported by the National Science Fund for Distinguished Young Scholars of ChinaProject(2008RS4037) supported by the Postdoctoral Science and Research Special Foundation of Hunan Province, ChinaProject supported by the Postdoctoral Science Foundation of Central South University, China
文摘By using microwave-assisted co-precipitation in aqueous phase, adding surface activation agent PEG-6000 into the mixture of InCl3 solution and SnCl4 solution, and dropping the ammonia solution with the density (volume ratio) of 1-0 to 1-4, ITO precursor was prepared at different reaction system temperatures of 35 ℃-85 ℃, then ITO nano-powder was obtained after it was calcinated at 800 ℃ for 1 h. The morphology of ITO nano-powder was characterized by SEM and its electrical conductivity was determined by conductivity meter. The effects of different temperatures and ammonia concentration in microwave-assisted reaction system on its morphology and electric conductivity were discussed. The experimental results indicate that with the dilution of the ammonia solution or the rise of reacting system temperature, the morphology of ITO particles is transformed from spherical to rod-like one with the decline of its electric conductivity. And the electric conductivity of ITO nano-powders with spherical morphology is higher than that of ITO nano-powders with rod-like morphology.
基金Supported by the National Natural Science Foundation of China(No.29836130).
文摘The property of extraction solution is an important factor influencing the extraction efficiency. In the present work, the effect of the property of solution on extraction of GA was studied, which including the concentration of ethanol, ammonia and cation (M+), pH of extraction solution, different kinds of organic solvent etc. The results show that 50%-60%(v/v) ethanol can reach high percentage extraction of GA. If 1% (v/v) ammonia solution was added into 60%(v/v) ethanol, the percentage extraction can be increased from 2.0% to 2.31%. Without ammonia, 50mmol/L [M+] (M+ = K+, NH4+) was added into 60%(v/v) ethanol, percentage extraction of GA can reach about 2.26%. If pH of solution (60% ethanol) was adjust to pH=4.0, it can reach high percentage extraction. If pH of solution (60% ethanol + 50mmol [M+], pH=6.1) was adjust tO PH=4.0, especially M+ is K+ or NH4+, it can reach almost same extraction efficiency as that of 1% ammonia solution + 60% ethanol, and the operation environment can be greatly improved.
文摘Eu^2+-doped Ba3Si6012N2 green phosphors were prepared by microwave assisted sintering method at 1275℃ for 4 h, while the counterparts using conventional solid-state reaction method were synthesized at temperature higher than 1300℃ and for to 10 h. Microwave assisted sintering could reduce the activation energy and enhance the diffu- sion rate, thus greatly improved the sintering. Moreover, the influence of Si3N4 content on phase formation, morphol- ogy, absorption, and quantum efficiency, and photoluminescence properties of phosphors were studied. As a result, the Ba3Si6OI2N2:Eu^2+ samples sintered by microwave assisted sintering method have a higher phase purity and photo- luminescence intensity under ultraviolet excitation as compared with samples sintered in the conventional tube furnace The proposed method is a potential preparation method for the oxynitride phosphors with strong photoluminescence and high phase purity.
文摘Lignocellulosic materials are promising alternative feedstocks for bioethanol production. However, the recalcitrant nature of lignocellulosic biomass necessitates an efficient pretreatment pretreatment step to improve the yield of fermentable sugars and maximizing the enzymatic hydrolysis efficiency. Microwave pretreatment may be a good alternative as it can reduce the pretreatment time and improve the enzymatic activity during hydrolysis. The overall goal of this paper is to expand the current state of knowledge on microwave-based pretreatment of lignocellulosic biomass and microwave assisted enzymatic reaction or Microwave Irradiation-Enzyme Coupling Catalysis (MIECC). In the present study, a comparison of microwave assisted alkali pretreatment was tried using Oil Palm empty fruit bunch. The microwave assisted alkali pretreatment of EFB using NaOH, significantly improved the enzymatic saccharification of EFB by removing more lignin and hemicellulose and increasing its accessibility to hydrolytic enzymes. The results showed that the optimum pretreatment condition was 3% (w/v) NaOH at 180 W for 12 minutes with the optimum component loss of lignin and holocellulose of about 74% and 24.5% respectively. The subsequent enzymatic saccharification of EFB pretreated by microwave assisted NaOH (3% w/v);resulted in 411 mg of reducing sugar per gram EFB at cellulose enzyme dosage of 20 FPU. The overall enhancement by the microwave treatment during the microwave assisted alkali pretreatment and microwave assisted enzymatic hydrolysis was 5.8 fold. The present study has highlighted the importance of well controlled microwave assisted enzymatic reaction to enhance the overall reaction rate of the process.
基金supported by the Gobierno de Espaa for the Provision of a Ramon y Cajal Contract (RYC-2009-04199),Projects P10 FQM-6711(Consejeria de Ciencia e Innovacion,Junta de Andalucia) and CTQ2011 28954-C02-02 (MICINN)
文摘A comparison between conventional pyrolysis and a novel developed low-temperature microwave-assisted pyrolysis methodology has been performed for the valorisation of a range of biomass feedstocks including waste residues. Microwave pyrolysis was found to efficiently deliver comparable evolution of bio-gases in the system as compared with conventional pyrolysis at significantly reduced temperatures (120-180 ℃vs 250-400 ℃). The gas obtained from microwave-assisted pyrolysis was found to contain CO2, CH4 and CO as major components as well
基金the Science and Technology Developing Fellowship Program(No.2 0 0 30 5 5 1- 7) by Jilin Province
文摘Three microwave-assisted extraction(MAE) procedures were studied. The first procedure was household microwave oven dynamic extraction(HMODE). The second procedure was special microwave oven bath extraction(SMOBE). The third procedure was microwave resonant cavity dynamic extraction(MRCDE). The results obtained by the three microwave-assisted extraction procedures were compared with those obtained by using traditional Soxhlet extraction. The results indicate that the MAE not only took a shorter time, but also simplified the procedure, and made the extraction a higher yield. At the same time the results obtained by the three MAE procedures were also compared with each other.
基金Project supported by the Postdoctoral Science Foundation of Central South University,ChinaProjects(50621063,30700008)supported by the National Natural Science Foundation of China
文摘High density ZnO-nanorod arrays(rod length 1.59μm)were successfully synthesized via a microwave-assisted solution-phase method using zinc chloride and ammonia solution as reactants.The influence of concentration of ammonia solution, work power,and microwave irradiation time on the morphology and size of final products was carefully investigated.The crystal structure,chemical composition and morphologies of final products were characterized using X-ray powder diffraction(XRD), scanning electron microscopy(SEM)and photoluminescence(PL).The as-synthesized ZnO is composed of single crystalline and possesses three photoluminescence emissions centered at 400,469 and 534.5 nm,respectively.
基金partially supported by grants from the Science and Technology Development Fund of Macao(FDCT059/2011/A3)the University of Macao(MYRG085 to Jing Zhao and MYRG201400041 to LSP,respectively)
文摘In this work,a fast and efficient microwave-assisted extraction(MAE) method was developed to extract main bioactive alkaloids from lotus plumue.To optimize MAE conditions,three main factors were selected using univariate approach experiments,and then central composite design(CCD).The optimal extraction conditions were as follows:methanol concentration of 65%,microwave power of 200 W,and extraction time of 260 s.A high performance liquid chromatography–diode array detector(HPLC–DAD) method was established to quantitatively analyze these phytochemicals in different lotus plumule samples and in different part of lotus.Chromatographic separation was carried out on an Agilent Zorbax Extend-C_(18) column(4.6 mm×150 mm,3.5 μm).Gradient elution was applied with the mobile phase constituted with 0.1% triethylamine in water(A)and acetonitrile(B):40%-70% B at 0-8 min,70%-100% B at 8–9 min,100% B for 2 min,and then equilibrated with 40% B for 2 min.
基金supported by the National Natural Science Foundation of China(21376113)the Jiangsu Specially Appointed Professor Projectthe Graduate Student Scientific Research Innovation Projects in Jiangsu Province(KYZZ15_0384)~~
文摘A Pt/graphene‐TiO2catalyst was prepared by a microwave‐assisted solvothermal method and was characterized by X‐ray diffraction,scanning electron microscopy,transmission electron microscopy,cyclic voltammetry,and linear sweep voltammetry.The cubic TiO2particles were approximately60nm in size and were distributed on the graphene sheets.The Pt nanoparticles were uniformly distributed between the TiO2particles and the graphene sheet.The catalyst exhibited a significant improvement in activity and stability towards the oxygen reduction reaction compared with Pt/C,which resulted from the high electronic conductivity of graphene and strong metal‐support interactions.
基金Supported by Universiti Teknologi Malaysia through 415 Flagship(Grant No.03G70)
文摘This study was aimed at evaluating the physicochemical properties and oxidation stability of castor oil using microwave-assisted solvent extraction(MAE). MAE was performed using 5% ethanol in hexane as solvent at different extraction times, power intensities and solvent-to-feed(S/F, ml of solvent to gram of feed) ratios.The process parameters were optimized by statistical approach using historical data design of response surface method(RSM). The oils were characterized for yield, physicochemical properties, dielectric properties and oxidation stability, and comparison was also made with oil extracted using Soxhlet method. Results show that the maximum oil yield of 37% was obtained at 20 min with microwave power intensity of 330 W and S/F ratio of 20. The main fatty acid composition of castor oil is ricinoleic acid. The density, refractive index, dielectric properties and oxidation stability of oils are not affected by the extraction methods and extraction parameters of MAE. However, the MAE-extracted oil is more viscous compared to that by Soxhlet method. With extra caution on oil oxidation, MAE could be a promising solvent extraction method with an 86% less in processing time and a higher yield.
文摘Poly (lactic acid) (PLA) was synthesized by microwave-assisted ring-opening polymerization of D, L-lactide with stannous octanoate (SnOct(2)) as catalyst. Its weight-average molar mass (M-w) ranged from 39000 to 67000 and the polydispersity index from 1.3 to 1.7. The polymerization rate was much faster than that of the conventional thermal polymerization. A degradation of newly formed PLA in reaction mixture by microwave irradiation was observed.
基金Project(2007CB613606)supported by the National Basic Research Program of ChinaProjects(50734007,50974067)supported by the National Natural Science Foundation of China
文摘A greenness evaluation index and system of microwave-assisted leaching method were established.The effects of the life cycle assessment variables,such as the resource consumption,environment impact,cost,time and quality,were investigated,and the concept of green degree was applied in the production of synthetic rutile.An analytic hierarchy process was utilized to assess matrix of greenness evaluation.The Gauss-Seidel iterative matrix method was employed to solve the assessment matrix and obtain the weights and membership functions of all evaluation indexes.A fuzzy decision-making method was applied to build the greenness evaluation model,and then the scores of green degree in microwave-assisted leaching process was obtained.The greenness evaluation model was applied to the life cycle assessment of the microwave-assisted leaching process.The results show that the microwave-assisted leaching process has advantages over the conventional ones,with respect to energy-consumption,processing time and environmental protection.
基金the National Natural Science foundationof China(No.20875060) for financial support
文摘Microwave-assisted extraction was optimized with response surface methodology for HPLC-fluorescence determination of puerarin and daidzein in Radix Puerariae thomsonii.The optimized extraction procedure was achieved by soaking the sample with 70% methanol(1∶15,v/v)for 30 min,and then microwave irradiation for 11 min at a power of 600 W.Coupling the extraction process with HPLC-fluorescence presented good recovery,satisfactory precision,and good linear relation.Compared with a method from the Chinese Pharmacopoeia,the proposed method enables higher extraction efficiency and more accurate analytical results.It can be of potential value in quality assessment of Radix Puerariae thomsonii medicinal materials.
文摘Microwave-assisted Kornblum oxidation is proved to be an effective way to obtain aldehyde and ketones from their corresponding chlorides. Under microwave irradiation, not only the reaction time was greatly decreased, due to avoiding the by-product, the yield was increased. It is noteworthy that the scope of the method was broadly expanded.
基金the financial support of this work by the Research Council of Mazandaran University.
文摘Copper-catalyzed synthesis of N-aryl anthranilic acid derivatives using effective amination of 2-chloro and 2-bromobenzoic acid under microwave irradiation is reported. Some of the advantages of this method are high chemoselectivity, short reaction times, ease of work up procedure and elimination of the need for acid protection. 2009 Published by Elsevier B.V. on behalf of Chinese Chemical Society.
文摘This paper summarized application and research advancement of the microwave-assisted extraction in the agriculture, food industry, environmental analytical chemistry, traditional Chinese medicine industry, and so on. The microwave-assisted extraction was manifested to be a simple device, wide area of application, high extraction efficiency, good reproducibility and low consumption of agent and time as well as low environmental pollution. At present, industrialization question of the microwave-assisted extraction technology has been attached importance, which will impel the microwave-assisted extraction technology to more development in the future
基金supported by the National Natural Science Foundation of Hainan Province(Grant No.812200)
文摘Objective:To prepare a novel biodegradable poly(2-hydroxyethylmethacrilate)(pHEMAt hydrogel as tissue engineering scaffold.Methods:The pHEMA hydrogel was synthesized by microwaveassisted polymerization using 2-hydroxyethyl methacrylale(IIEMA)as the raw material,potassium persulfate as the initiator,and PCI.X as the cross-linking additive.The hvdrogels was characterized with FTIR and NMR spectroscopy.The physical and chemical properties of the prepared hydrogel were evaluated,and its degradation performance was tested.The cytotoxicity of the optimum composite hydrogel was measured by an MTT assay to confirm the feasibility of its use in tissue engineering.Results:The optimum conditions under which the hydrogel was prepared by microwave-assisted polymerization are as follows:1.5 g cross-linking additive,0.3 g initiator,reaction temperature of 80°C,and microwave power of 800 W.Degradation studies showed good degradation profiles with 75%in 17 days.Additionally,the hydrogels did not elicit any cytotoxic response in in vitro cytotoxic assays.Conclusion:A biodegradable pIIEMA hydrogel was successfully prepared by microwave-assisted polymerization,as confirmed from FTIR and NMR results.The hydrogel shows promising applications in tissue engineering,and its healing ability and biocompatibilily will be evaluated in detail in the future.