期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
High-frequency microwave cavity design for high-mass dark matter axion searches
1
作者 张驰 王佳 +4 位作者 李春光 陈石广 程航 孙亮 吴云 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期87-94,共8页
The haloscope based on the TM_(010)mode cavity is a well-established technique for detecting QCD axions.However,the method has limitations in detecting high-mass axion due to significant volume loss in the high-freque... The haloscope based on the TM_(010)mode cavity is a well-established technique for detecting QCD axions.However,the method has limitations in detecting high-mass axion due to significant volume loss in the high-frequency cavity.Utilizing a higher-order mode cavity can effectively reduce the volume loss of the high-frequency cavity.The rotatable dielectric pieces as a tuning mechanism can compensate for the degradation of the form factor of the higher-order mode.Nevertheless,the introduction of dielectric causes additional volume loss.To address these issues,this paper proposes a novel design scheme by adding a central metal rod to the higher-order mode cavity tuned by dielectrics,which improves the performance of the haloscope due to the increased effective volume of the cavity detector.The superiority of the novel design is demonstrated by comparing its simulated performance with previous designs.Moreover,the feasibility of the scheme is verified by the full-wave simulation results of the mechanical design model. 展开更多
关键词 AXION haloscope microwave cavity
下载PDF
Charge Qubit Storage and Its Engineered Decoherence via Microwave Cavity
2
作者 GAOYi-Bo LIChong 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第2期213-218,共6页
We study the entanglement of the superconducting charge qubit with the quantized electromagnetic field in a microwave cavity. It can be controlled dynamically by a classical external field threading the SQUID within t... We study the entanglement of the superconducting charge qubit with the quantized electromagnetic field in a microwave cavity. It can be controlled dynamically by a classical external field threading the SQUID within the charge qubit. Utilizing the controllable quantum entanglement, we can demonstrate the dynamic process of the quantum storage of information carried by charge qubit. On the other hand, based on this engineered quantum entanglement, we can also demonstrate a progressive decoherence of charge cubit with quantum jump due to the coupling with the cavity field in quasi-classical state. 展开更多
关键词 charge qubit engineered decoherence quantum information storage microwave cavity
下载PDF
Design and test of the microwave cavity in an optically-pumped Rubidium beam frequency standard
3
作者 刘畅 王延辉 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第1期190-194,共5页
We are developing a compact rubidium atomic beam frequency standard with optical pumping and detection. The cavity for microwave interrogation is an important part of the clock. The cavity in our design is a Ramsey-ty... We are developing a compact rubidium atomic beam frequency standard with optical pumping and detection. The cavity for microwave interrogation is an important part of the clock. The cavity in our design is a Ramsey-type, E-bend one, which is the same as the conventional method in most cesium beam clocks. Requirements for the design are proposed based on the frequency shift associated with the cavity. The basic structure of the cavity is given by theoretical analysis and detailed dimensions are determined by means of electromagnetic field simulation with the help of commercial software.The cavity is manufactured and fabricated successfully. The preliminary test result of the cavity is given, which is in good agreement with the simulation. The resonant frequency is 6.835 GHz, equal to the clock transition frequency of87 Rb, and the loaded quality factor is 500. These values are adjustable with posts outside the cavity. Estimations on the Ramsey line width and several frequency shifts are made. 展开更多
关键词 rubidium beam clock optical pumping microwave cavity frequency shift
下载PDF
Degenerate cascade fluorescence: Optical spectral-line narrowing via a single microwave cavity
4
作者 Liang Hu Xiang-Ming Hu Qing-Ping Hu 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第6期346-358,共13页
For a three-level atom, two nondegenerate(even microwave and optical) electric dipole transitions are usually allowed;for either of these, the fluorescence spectra are well-described in terms of spontaneous transition... For a three-level atom, two nondegenerate(even microwave and optical) electric dipole transitions are usually allowed;for either of these, the fluorescence spectra are well-described in terms of spontaneous transitions from a triplet of dressed sublevels to an adjacent lower-lying triplet. When the three dressed sublevels are equally spaced from each other, a remarkable feature known as degenerate cascade fluorescence takes place, which displays a five-peaked structure. We show that a single cavity can make all the spectral lines extremely narrow, whether they arise from cavity-coupled or cavity-free transitions. This effect is based on intrinsic cascade lasing feedback and makes it possible to use a single microwave cavity(even a bad cavity) to narrow the spectral lines in the optical frequency regime. 展开更多
关键词 resonance fluorescence narrow spectral lines microwave cavity
下载PDF
Physics package based on intracavity laser cooling ^(87)Rb atoms for space cold atom microwave clock
5
作者 邓思敏达 任伟 +9 位作者 项静峰 赵剑波 李琳 张迪 万金银 孟艳玲 蒋小军 李唐 刘亮 吕德胜 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期22-26,共5页
This article proposes a new physics package to enhance the frequency stability of the space cold atom clock with the advantages of a microgravity environment. Clock working processes, including atom cooling, atomic st... This article proposes a new physics package to enhance the frequency stability of the space cold atom clock with the advantages of a microgravity environment. Clock working processes, including atom cooling, atomic state preparation,microwave interrogation, and transition probability detection, are integrated into the cylindrical microwave cavity to achieve a high-performance and compact physics package for the space cold atom clock. We present the detailed design and ground-test results of the cold atom clock physics package in this article, which demonstrates a frequency stability of 1.2×10^(-12) τ^(-1/2) with a Ramsey linewidth of 12.5 Hz, and a better performance is predicted with a 1 Hz or a narrower Ramsey linewidth in microgravity environment. The miniaturized cold atom clock based on intracavity cooling has great potential for achieving space high-precision time-frequency reference in the future. 展开更多
关键词 atomic clock MICROGRAVITY microwave cavity space station frequency stability
下载PDF
A design of resonant cavity with an improved coupling-adjusting mechanism for the W-band EPR spectrometer 被引量:1
6
作者 Yu He Runqi Kang +2 位作者 Zhifu Shi Xing Rong Jiangfeng Du 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第11期115-120,共6页
We report a new design of resonant cavity for a W-band electron paramagnetic resonance(EPR)spectrometer.An improved coupling-adjusting mechanism,which is robust,compact,and suits with both solenoid-type and split-pair... We report a new design of resonant cavity for a W-band electron paramagnetic resonance(EPR)spectrometer.An improved coupling-adjusting mechanism,which is robust,compact,and suits with both solenoid-type and split-pair magnets,is utilized on the cavity,and thus enables both continuous-wave(CW)and pulsed EPR experiments.It is achieved by a tiny metal cylinder in the iris.The coupling coefficient can be varied from 0.2 to 17.9.Furthermore,two pistons at each end of the cavity allow for adjustment of the resonant frequency.A horizontal TE_(011) geometry also makes the cavity compatible with the two frequently used types of magnets.The coupling-varying ability has been demonstrated by reflection coefficient(S_(11))measurement.CW and pulsed EPR experiments have been conducted.The performance data indicates a prospect of wide applications of the cavity in fields of physics,chemistry and biology. 展开更多
关键词 electron paramagnetic resonance W-BAND microwave cavity coupling coefficient
下载PDF
Microwave absorbing properties of high titanium slag
7
作者 张利波 陈菓 +3 位作者 彭金辉 陈晋 郭胜惠 段昕辉 《Journal of Central South University》 SCIE EI CAS 2009年第4期588-593,共6页
Microwave absorbing properties of high titanium slag were investigated by using microwave cavity perturbation technique. High titanium slag containing more than 90% TiO2 was prepared by carbothermal reduction of ilmen... Microwave absorbing properties of high titanium slag were investigated by using microwave cavity perturbation technique. High titanium slag containing more than 90% TiO2 was prepared by carbothermal reduction of ilmenite. The temperature rise curve of high titanium slag in microwave heating process was obtained. Crystalline compounds of high titanium slag before and after microwave irradiation were obtained and characterized by X-ray diffractometry (XRD). Effects of particle size of high titanium slag anal mixtures of high titanium slag with different mass fractions of V2o5 on microwave absorbing properties were investigated systematically. The results show that high titanium slag has good microwave absorption property; untreated high titanium slag mainly consists of crystalline compounds of anatase and iron titanium oxide, while the microwave-irradiation treated one is mainly composed of crystalline compounds of rutile and irgn titanium oxide. Synthetic anatase is transformed completely into rutile at about 1 050 ℃ for 20 min under microwave irradiation. High frequency shift and low amplitude of voltage make high titanium slag an ideal microwave absorbent. 180 μm of particle size and 10% mass fraction of V2O5 are found to be the optimum conditions for microwave absorption. 展开更多
关键词 high titanium slag microwave absorbing microwave cavity perturbation microwave irradiation
下载PDF
High-frequency gravitational waves having large spectral densities and their electromagnetic response
8
作者 李芳昱 文毫 方祯云 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第12期104-112,共9页
Various cosmology models, brane oscillation scenarios, interaction of interstellar plasma with intense electromagnetic radiation, and even high-energy physics experiments (e.g., Large Hadron Collider (LHC)) all pr... Various cosmology models, brane oscillation scenarios, interaction of interstellar plasma with intense electromagnetic radiation, and even high-energy physics experiments (e.g., Large Hadron Collider (LHC)) all predict high frequency gravitational waves (HFGWs, i.e., high-energy gravitons) in the microwave band and higher frequency region, and some of them have large energy densities. Electromagnetic (EM) detection to such HFGWs would be suitable due to very high frequencies and large energy densities of the HFGWs. We review several typical EM detection schemes, i.e., inverse Gertsenshtein effect (G-effect), coupling of the inverse G effect with a coherent EM wave, coupling of planar superconducting open cavity with a static magnetic field, cylindrical superconducting closed cavity, and the EM sychro-resonance system, and discuss related minimal detectable amplitudes and sensitivities. Furthermore, we give some new ideas and improvement ways enhancing the possibility of measuring the HFGWs. It is shown that there is still a large room for improvement for those schemes to approach and even reach up the requirement of detection of HFGWs expected by the cosmological models and high-energy astrophysical process. 展开更多
关键词 high-frequency gravitational waves electromagnetic response of high-frequency gravitational waves superconducting microwave cavities synchro-resonance system
下载PDF
Study of the cavity-magnon-polariton transmission line shape 被引量:1
9
作者 Michael Harder LiHui Bai +2 位作者 Christophe Match Jesko Sirker CanMing Hu 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2016年第11期70-80,共11页
We experimentally and theoretically investigate the microwave transmission line shape of the cavity-magnon-polariton(CMP)created by inserting a low damping magnetic insulator into a high quality 3D microwave cavity. W... We experimentally and theoretically investigate the microwave transmission line shape of the cavity-magnon-polariton(CMP)created by inserting a low damping magnetic insulator into a high quality 3D microwave cavity. While fixed field measurements are found to have the expected Lorentzian characteristic, at fixed frequencies the field swept line shape is in general asymmetric. Such fixed frequency measurements demonstrate that microwave transmission can be used to access magnetic characteristics of the CMP,such as the field line width H. By developing an effective oscillator model of the microwave transmission we show that these line shape features are general characteristics of harmonic coupling. At the same time, at the classical level the underlying physical mechanism of the CMP is electrodynamic phase correlation and a second model based on this principle also accurately reproduces the experimental line shape features. In order to understand the microscopic origin of the effective coupled oscillator model and to allow for future studies of CMP phenomena to extend into the quantum regime, we develop a third, microscopic description,based on a Green's function formalism. Using this method we calculate the transmission spectra and find good agreement with the experimental results. 展开更多
关键词 cavity-magnon-polariton strong-coupling microwave cavity ferromagnetic resonance
原文传递
Controlled fabrication and microwave absorbing mechanism of hollow Fe3O4@C microspheres 被引量:3
10
作者 Yanhui Hou Huili Yuan +2 位作者 Hang Chen Junhai Shen Liangchao Li 《Science China Chemistry》 SCIE EI CAS CSCD 2017年第6期740-747,共8页
Uniform core-shell SiO2@Fe_3O_4@C microspheres were prepared by a one-step hydrothermal method with SiO_2 microspheres as the template, and the hollow Fe_3O_4@C(HFC) microspheres were achieved via etching SiO_2 templa... Uniform core-shell SiO2@Fe_3O_4@C microspheres were prepared by a one-step hydrothermal method with SiO_2 microspheres as the template, and the hollow Fe_3O_4@C(HFC) microspheres were achieved via etching SiO_2 template. By changing the sizes of SiO_2 microspheres, a series of HFC microspheres with variable cavity sizes were obtained to study the relationship between cavity size and microwave absorbing(MA) performance for the first time. The morphology and structure of samples were characterized in detail. The results showed that the MA performance of HFC sample depended on its cavity size. In particular, the hollow structure was good for improving MA performance and could make MA move to the high-frequency region. More importantly, as the cavity size increases, the resonance frequency of HFC-i(i=1,2, 3, 4) samples moved to a low frequency, and the optimal matching thickness of HFC-i samples was increasing. Among all HFC-i samples, HFC-3 showed the most excellent MA performance,which could be mainly explained by the quarter-wavelength matching model, intrinsical magnetic and dielectric loss. Furthermore,the MA performance of HFC mixture blended by the equal mass fraction of HFC-2, HFC-3 and HFC-4 was the comprehensive results of three HFC-i samples. All the above suggested that the cavity size in HFC sample had a great influence on the MA performance. 展开更多
关键词 microwave absorbing Fe_3O_4@C cavity size
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部