Microwave dielectric ceramics should be improved to advance mobile communication technologies further.In this study,we prepared Sr_(1+x)Y_(2)O_(4+x)(x=0-0.04)ceramics with nonstoichiometric Sr^(2+)ratios based on our ...Microwave dielectric ceramics should be improved to advance mobile communication technologies further.In this study,we prepared Sr_(1+x)Y_(2)O_(4+x)(x=0-0.04)ceramics with nonstoichiometric Sr^(2+)ratios based on our previously reported SrY_(2)O_(4) microwave dielectric ceramic,which has a low dielectric constant and an ultrahigh quality factor(Q value).The ceramic exhibited a 33.6% higher Q-by-frequency(Q×f)value(Q≈12,500)at x=0.02 than SrY_(2)O_(4).All Sr_(1+x)Y_(2)O_(4+x)(x=0-0.04)ceramics exhibited pure phase structures,although variations in crystal-plane spacings were observed.The ceramics are mainly composed of Sr-O,Y1-O,and Y_(2)-O octahedra,with the temperature coefficient of the resonant frequency(τ_(f))of the ceramic increasing with Y_(2)-O octahedral distortion.The ceramic comprises uniform grains with a homogeneous elemental distribution,clear grain boundaries,and no obvious cavities at x=0.02.The Sr_(1+x)Y_(2)O_(4+x)(x=0-0.04)ceramics exhibited good microwave dielectric properties,with optimal performance observed at x=0.02(dielectric constant(εr)=15.41,Q×f=112,375 GHz,and τ_(f)=-17.44 ppm/℃).The τ_(f) value was reduced to meet the temperaturestability requirements of 5G/6G communication systems by adding CaTiO_(3),with Sr_(1.02)Y_(2)O_(4.02)+2wt% CaTiO_(3) exhibiting ε_(r)=16.14,Q×f=51,004 GHz,andτf=0 ppm/℃.A dielectric resonator antenna prepared using Sr_(1.02)Y_(2)O_(4.02)+2wt%CaTiO_(3) exhibited a central frequency of 26.6 GHz,with a corresponding gain and efficiency of 3.66 dBi and 83.14%,respectively.Consequently,Sr_(1.02)Y_(2)O_(4).02-based dielectric resonator antennas are suitable for use in 5G millimeter-wave band(24.5-27.5 GHz)applications.展开更多
A series of nominal compositions MgAl_(2-x)(Li_(1/3)Ti_(2/3))_(x)O_(4)(x=0,0.04,0.08,0.12,0.16,and 0.20)ceramics were successfully prepared via the conventional solid-state reaction route.The phase compositions,micros...A series of nominal compositions MgAl_(2-x)(Li_(1/3)Ti_(2/3))_(x)O_(4)(x=0,0.04,0.08,0.12,0.16,and 0.20)ceramics were successfully prepared via the conventional solid-state reaction route.The phase compositions,microstructures,and microwave dielectric properties were investigated.The results of x-ray diffraction(XRD)and scanning electron microscopy(SEM)showed that a single phase of MgAl_(2-x)(Li_(1/3)Ti_(2/3))_(x)O_(4)ceramics with a spinel structure was obtained at x≤0.12,whereas the second phase of MgTi_(2)O_(5)appeared when x>0.12.The cell parameters were obtained by XRD refinement.As the x values increased,the unit cell volume kept expanding.This phenomenon could be attributed to the partial substitution of(Li_(1/3)Ti_(2/3))^(3+)for Al^(3+).Results showed that(Li_(1/3)Ti_(2/3))^(3+)doping into MgAl_(2)O_(4)spinel ceramics effectively reduced the sintering temperature and improved the quality factor(Q_f)values.Good microwave dielectric properties were achieved for a sample at x=0.20 sintering at 1500℃in air for 4 h:dielectric constantε_(r)=8.78,temperature coefficient of resonant frequencyτ_(f)=-85 ppm/℃,and Q_(f)=62300 GHz.The Q_(f)value of the x=0.20 sample was about 2 times higher than that of pure MgAl_(2)O_(4)ceramics(31600 GHz).Thus,MgAl_(2-x)(Li_(1/3)Ti_(2/3))_(x)O_(4)ceramics with excellent microwave dielectric properties can be applied to 5G communications.展开更多
The explosive process of 5G communication evokes the urgent demand of miniaturized and integrated dielectric ceramics filter It is a pressing need to advance the development of dielectric ceramics utilization of emerg...The explosive process of 5G communication evokes the urgent demand of miniaturized and integrated dielectric ceramics filter It is a pressing need to advance the development of dielectric ceramics utilization of emerging technology to design new materials and understand the polarization mechanism.This review provides the summary of the study of microwave dielectric ceramics(MWDCs)sintered higher than 1000℃ from 2010 up to now,with the purpose of taking a broad and historical view of these ceramics and illustrating research directions.To date,researchers endeavor to explain the structure-property relationship of ceramics with multitude of approaches and design a new formula or strategy to obtain excellent microwave dielectric properties.There are variety of factors that impact the permittivity,dielectric loss,and temperature stability of dielectric materials,covering intrinsic and extrinsic factors.Many of these factors are often intertwined,which can complicate new dielectric material discovery and the mechanism investigation.Because of the various ceramics systems,pseudo phase diagram was used to classify the dielectric materials based on the composition.In this review,the ceramics were firstly divided into ternary systems,and then brief description of the experimental probes and complementary theoretical methods that have been used to discern the intrinsic polarization mechanisms and the origin of intrinsic loss was mentioned.Finally,some perspectives on the future outlook for high-temperature MWDCs were offered based on the synthesis method,characterization techniques,and significant theory developments.展开更多
Low permittivity microwave dielectric ceramics(MWDCs)are attracting great interest because of their promising applications in the new era of 5G and IoT.Although theoretical rules and computational methods are of pract...Low permittivity microwave dielectric ceramics(MWDCs)are attracting great interest because of their promising applications in the new era of 5G and IoT.Although theoretical rules and computational methods are of practical use for permittivity prediction,unsatisfactory predictability and universality impede rational design of new high-performance materials.In this work,based on a dataset of 254 single-phase microwave dielectric ceramics(MWDCs),machine learning(ML)methods established a high accuracy model for permittivity prediction and gave insights of quantitative chemistry/structureproperty relationships.We employed five commonly-used algorithms,and introduced 32 intrinsic chemical,structural and thermodynamic features which have correlations with permittivity for modeling.Machine learning results help identify the permittivity decisive factors,including polarizability per unit volume,average bond length,and average cell volume per atom.The feature-property relationships were discussed.The optimal model constructed by support vector regression with radial basis function kernel was validated its superior predictability and generalization by verification dataset.Low permittivity material systems were screened from a dataset of~3300 materials without reported microwave permittivity by high-throughput prediction using optimal model.Several predicted low permittivity ceramics were synthesized,and the experimental results agree well with ML prediction,which confirmed the reliability of the prediction model.展开更多
With the rapid development of mobile communication technology towards 5G and 6G,the microwave dielectric materials with ultra-low permittivity and ultra-high Qf value are urgently demanded.Here,the excellent microwave...With the rapid development of mobile communication technology towards 5G and 6G,the microwave dielectric materials with ultra-low permittivity and ultra-high Qf value are urgently demanded.Here,the excellent microwave dielectric properties are reported in H3BO3 ceramics with the molecular crystal structure,whose permittivity(2.84)and density(1.46 g/cm^(3))are record-low among the low-loss ceramics.The ultra-high Qf value of 146,000 GHz(or the ultra-low dielectric loss of 1.03×10^(-4) at 15 GHz)is also distinguished.Besides,the H_(3)BO_(3) ceramics can be densified at room temperature by a simple cold sintering process in a short time of 10 min,and this brings many advantages for the integration with microwave circuits.The large molecule volume originating from the molecular crystal structure and the low dielectric polarizabilities of H^(+) and B^(3+) are responsible for the ultra-low permittivity of H_(3)BO_(3) ceramics,and more microwave dielectric materials with ultra-low permittivity and ultra-high Qf value are expected to be explored in the molecular crystals.展开更多
La_2O_3-doped CaO-MgO-Nb_2O_5-TiO_2 system ceramics were prepared by solid-state ceramic technique. The microstructure and microwave dielectric properties of CaO-MgO-Nb_2O_5-TiO_2-La_2O_3 ceramics can be adjusted by v...La_2O_3-doped CaO-MgO-Nb_2O_5-TiO_2 system ceramics were prepared by solid-state ceramic technique. The microstructure and microwave dielectric properties of CaO-MgO-Nb_2O_5-TiO_2-La_2O_3 ceramics can be adjusted by varying the amount of La^(3+) ions. The results show that the replacement of Ca^(2+) by La^(3+) at A-site of the ceramics can increase the quality factor Q·f value as well as the temperature coefficient of resonant frequency τ_f and decrease the dielectric constant ε_r. With increase of La^(3+) contents, the dielectric constant decreases from 57 to 35 and Q·f value increases from 33400 GHz to 35000 GHz (at 7.6 GHz). Meanwhile, the temperature coefficient of resonant frequency is improved towards near zero. The dielectric properties of these compounds are related to octahedra tilting due to deficient vacancies at A-site.展开更多
The effect of La^3 + , Sr^2+ on the microstructure and microwave properties of CaO-MgO-Nb2O5-TiO2 system ceramics was investigated. The result shows that a single complex perovskite structure formed within investiga...The effect of La^3 + , Sr^2+ on the microstructure and microwave properties of CaO-MgO-Nb2O5-TiO2 system ceramics was investigated. The result shows that a single complex perovskite structure formed within investigated composition range in La^3+ , Sr2-doped CaO-MgO-Nb2O5-TiO2 system ceramics. With increasing of La^3+ , Sr^2+ content, the structure of La^3+ , Sr2-doped CaO-MgO-Nb2O5-TiO2 system ceramic respectively maintain orthorhombic type.展开更多
La2O3 and SrO-doped CaO-MgO-Nb2O3-TiO2 system ceramics were prepared by solid-state ceramic technique.The microstructure and microwave dielectric properties of CaO-MgO-Nb2O5-TiO2-La2O3 cermics can be adjusted by varyi...La2O3 and SrO-doped CaO-MgO-Nb2O3-TiO2 system ceramics were prepared by solid-state ceramic technique.The microstructure and microwave dielectric properties of CaO-MgO-Nb2O5-TiO2-La2O3 cermics can be adjusted by varying the amount of La^3+ or Sr^2+ ions respectively.The replacement of Ca^2+ by La^3+ at A-site of the ceramics increases the quality factor Q value( at 7.6GHz)as well as the temperature coefficient of resonant frequency τf and decreases the dielectric constant εr and the substitution of Sr^2+ at A-site in this ceramics system exhibits opposite characteristics.The microwave properties of La^3+,Sr^2+-doped CaO-MgO-Nb2O5-TiO2 system ceramics depend on the degree of octahedral distortion inside materials.展开更多
Research on doping modification of ZnTiO_(3) ceramics to enhance microwave dielectric properties has been hindered by poor performance,unclear structure-function mechanisms.To expand the applicability of ZnTiO_(3) cer...Research on doping modification of ZnTiO_(3) ceramics to enhance microwave dielectric properties has been hindered by poor performance,unclear structure-function mechanisms.To expand the applicability of ZnTiO_(3) ceramics,this study explores Zn_(1-x)Li_(2x)TiO_(3)(O≤×≤1)ceramics using a phase engineering strategy.Our findings reveal that the introduction of Lit into the ZnTiO_(3) system initiates a multiple phase transition,starting at x=0.1.Initially,ilmenite ZnTiO_(3) transforms into a cubic ordered spinel phase(space group P4332).Subsequently,a transition to a disordered spinel phase(space group Fd3m)occurs at x=0.5,culminating in the formation of a monoclinic rock salt-structured LizTiO3 phase.Significantly,two sets of ceramics with near-zero temperature coefficients of resonance frequency(t:)were obtained at x=0.1 and 0.75.Moreover,the quality factor(Qxf)demonstrated a 4.4-fold increase compared to that of ZnTiO_(3) ceramics at x=0.25(105,013 GHz).Additionally,it was observed that the Ti4 polarization in Zn_(1-x)Li_(2x)TiO_(3) ceramics was underestimated by 11.3%-13.3%,causing the measured dielectric constant(e.)exceeding the theoretical dielectric constant(eth).The ionic polarizability of Ti*was adjusted to stabilize around 3.29 A.Evaluation using multiple methods,including Phillips-van Vechten-Levine(P-V-L)theory,Raman vibrational mode analysis,bond valence,bond energy theory,and octahedral distortion,confirms that the Ti-O bonds within the octahedron predominantly affect&r,the increasing lattice energy(U)contributes to the enhancement of Qxf,and the strengthened Li-O bond energy effectively regulates Tr.展开更多
Microwave dielectric ceramics(MWDCs)with low dielectric constant and low dielectric loss are desired in contemporary society,where the communication frequency is developing to high frequency(sub-6G).Herein,Nd_(2)(Zr_(...Microwave dielectric ceramics(MWDCs)with low dielectric constant and low dielectric loss are desired in contemporary society,where the communication frequency is developing to high frequency(sub-6G).Herein,Nd_(2)(Zr_(1−x)Ti_(x))_(3)(MoO_(4))_(9)(NZ_(1−x)T_(x)M,x=0.02-0.10)ceramics were prepared through a solid-phase process.According to X-ray diffraction(XRD)patterns,the ceramics could form a pure crystal structure with the R3c(167)space group.The internal parameters affecting the properties of the ceramics were calculated and analyzed by employing Clausius-Mossotti relationship,Shannon’s rule,and Phillips-van Vechten-Levine(P-V-L)theory.Furthermore,theoretical dielectric loss of the ceramics was measured and analyzed by a Fourier transform infrared(IR)radiation spectrometer.Notably,when x=0.08 and sintered at 700℃,optimal microwave dielectric properties of the ceramics were obtained,including a dielectric constant(ε_(r))=10.94,Q·f=82,525 GHz(at 9.62 GHz),and near-zero resonant frequency temperature coefficient(τ_(f))=−12.99 ppm/℃.This study not only obtained an MWDC with excellent properties but also deeply analyzed the effects of Ti^(4+)on the microwave dielectric properties and chemical bond characteristics of Nd_(2)Zr_(3)(MoO_(4))_(9)(NZM),which laid a solid foundation for the development of rare-earth molybdate MWDC system.展开更多
Dense microwave dielectric ceramics of Ce_(2)[Zr_(1−x)(Al_(1/2)Ta_(1/2))_(x)]_(3)(MoO_(4))_(9)(CZMAT) (x = 0.02–0.10) were prepared by the conventional solid-state route. The effects of (Al1/2Ta1/2)^(4+) on their mic...Dense microwave dielectric ceramics of Ce_(2)[Zr_(1−x)(Al_(1/2)Ta_(1/2))_(x)]_(3)(MoO_(4))_(9)(CZMAT) (x = 0.02–0.10) were prepared by the conventional solid-state route. The effects of (Al1/2Ta1/2)^(4+) on their microstructures, sintering behaviors, and microwave dielectric properties were systematically investigated. On the basis of the X-ray diffraction (XRD) results, all the samples were matched well with Pr_(2)Zr_(3)(MoO_(4))_(9) structures, which belonged to the space group R3¯c. The lattice parameters were obtained using the Rietveld refinement method. The correlations between the chemical bond parameters and microwave dielectric properties were calculated and analyzed by using the Phillips—Van Vechten—Levine (P—V—L) theory. Excellent dielectric properties of Ce_(2)[Zr_(0.94)(Al_(1/2)Ta_(1/2))_(0.06)]_(3)(MoO_(4))_(9) with a relative permittivity (ε_(r)) of 10.46, quality factor (Q × f) of 83,796 GHz, and temperature coefficient of resonant frequency (τ_(f)) of −11.50 ppm/℃ were achieved at 850 ℃.展开更多
Low-loss tungsten–bronze microwave dielectric ceramics are dielectric materials with potential application value for miniaturized dielectric filters and antennas in the fifth-generation(5G)communication technology.In...Low-loss tungsten–bronze microwave dielectric ceramics are dielectric materials with potential application value for miniaturized dielectric filters and antennas in the fifth-generation(5G)communication technology.In this work,a novel Al/Nd co-doping method of Ba_(4)Nd_(9.33)Ti_(18)O_(54)(BNT)ceramics with a chemical formula of Ba_(4)Nd_(9.33+z/3)Ti_(18−z)Al_(z)O_(54)(BNT–AN,0≤z≤2)was proposed to improve the dielectric properties through structural and defect modulation.Together with Al-doped ceramics(Ba_(4)Nd_(9.33)Ti_(18−z)Al_(4z/3)O_(54),BNT–A,0≤z≤2)for comparison,the ceramics were prepared by a solid state method.It is found that Al/Nd co-doping method has a significant effect on improving the dielectric properties compared with Al doping.As the doping amount z increased,the relative dielectric constant(εr)and the temperature coefficient of resonant frequency(τf)of the ceramics decreased,and the Q×f values of the ceramics obviously increased when z≤1.5.Excellent microwave dielectric properties ofεr=72.2,Q×f=16,480 GHz,andτf=+14.3 ppm/℃were achieved in BNT–AN ceramics with z=1.25.Raman spectroscopy and thermally stimulated depolarization current(TSDC)technique were firstly combined to analyze the structures and defects in microwave dielectric ceramics.It is shown that the improvement on Q×f values was originated from the decrease in the strength of the A-site cation vibration and the concentration of oxygen vacancies(VO××),demonstrating the effect and mechanism underlying for structural and defect modulation on the performance improvement of microwave dielectric ceramics.展开更多
Ba_(1-x)Sr_(x)CuSi_(2)O_(6) compounds with a tetrahedral structure(I41/acd)were prepared through the solid-state reaction method.The phase building process,structural evolution and microwave dielectric properties of B...Ba_(1-x)Sr_(x)CuSi_(2)O_(6) compounds with a tetrahedral structure(I41/acd)were prepared through the solid-state reaction method.The phase building process,structural evolution and microwave dielectric properties of Ba_(1-x)Sr_(x)CuSi_(2)O_(6) were investigated.Single BaCuSi_(2)O_(6) phase can be obtained when calcined at 1050℃ for 3 h or 950℃ for 10 h.The substitution of Ba^(2+) by Sr^(2+) can effectively promote the sintering process and the maximum solubility of Ba_(1-x)Sr_(x)CuSi_(2)O_(6) was located between 0.25 and 0.30.Rietveld refinement,Raman-spectra and P-V-L complex chemical bond theory were used to explain the correlations between the crystal structures and microwave dielectric properties.The dielectric constant was dominated by the susceptibility(Σχ^(μ))and ionic polarizability.The quality factor(Q×f)was determined by the bond strength,packing fraction and lattice energy,especially the Si-O bond.The susceptibility of Cu-O bond and Si-O bond played an important role in controlling the temperature coefficient of the resonant frequency(τf).A near zero τf value was obtained at x=0-0.10 and the optimum microwave dielectric properties for Ba_(1-x)Sr_(x)CuSi_(2)O_(6) were achieved at x=0.20 when sintered at 1000℃ for 3 h:ε_(r)=8.25,Q×f=47616 GHz and τf=9.6 ppm/℃.展开更多
We prepared (1-x)CaTiO3-xLaAlO3 (0 ≤x≤ 1) microwave dielectric ceramics using a conventional two-step solid-state reaction method,and investigated microwave dielectric properties of the ceramics in terms of A/B-site...We prepared (1-x)CaTiO3-xLaAlO3 (0 ≤x≤ 1) microwave dielectric ceramics using a conventional two-step solid-state reaction method,and investigated microwave dielectric properties of the ceramics in terms of A/B-site ionic-parameters.Ionic-parameters such as ionic polarizability,A-site bond valence,and ionic rattling were linked to the microwave dielectric properties.As the LaAlO3 content x in the (1-x)CaTiO3-xLaAlO3 ceramics increased from 0.3 to 0.7,the dielectric constant gradually decreased,which was attributed to the decrease of polarizability deviation and suppression of the cation rattling.The temperature coefficient of the resonant frequency decreased as the content of LaAlO3 increased because of the increase of A-site cation bond valence.The quality factor value (Q × f) increased as LaAlO3 content increased because of the enhancement of the order degree of B-site cation.A significant deterioration of the temperature coefficient of the resonant frequency and Q ×fvalue was observed at the composition x =0.5.These decreases were attributed to a phase transition from orthorhombic crystal (for x ≤ 0.5) to rhombohedral crystal (for x > 0.5).展开更多
Sr_(2)MgWO_(6)(SMW)is a typical perovskite oxide compound,but there has been little research on the effects of processing on its dielectric properties.In this work,SMW ceramics were prepared by solid-state synthesis w...Sr_(2)MgWO_(6)(SMW)is a typical perovskite oxide compound,but there has been little research on the effects of processing on its dielectric properties.In this work,SMW ceramics were prepared by solid-state synthesis with sintering at 1450℃,1475℃,1500℃and 1525℃,respectively.XRD results confirmed that the samples possessed double perovskite structure(Fm-3m).The Raman and FTIR spectra were used to study the lattice vibrational modes.The FPSQ model was used to obtain the fitting curves of the FTIR spectra and derive the intrinsic properties of the material that were found to be in agreement with the measured data.The structure-property relationships were successfully established based on the Raman mode results.The optimal sintering temperature of SMW ceramics was identified as 1475℃due to the excellent performances characteristics(ε_(r)=16.97,Q×f=23,872 GHz,τ_(f)=-35.38 ppm/℃)obtained at this temperature.This study explored the relationships among the crystal structures,lattice vibrational characteristics and dielectric properties of SMW ceramics,so as to further understand their dielectric response mechanism and lay a solid theoretical foundation for the development of microwave ceramics.展开更多
Zr substitution for Ti was investigated to modify the dielectric properties of Ba6-3xLa8+2xTi18O54(x=2/3) ceramics.A single-phase solid solution with tungstenbronze-like structure was formed in the range of 0<z<...Zr substitution for Ti was investigated to modify the dielectric properties of Ba6-3xLa8+2xTi18O54(x=2/3) ceramics.A single-phase solid solution with tungstenbronze-like structure was formed in the range of 0<z<0.2 in Ba6-3xLa8+2x(Ti1-zZrz)18O54 ceramics.As Zr content exceeded this range,a secondary phase of Ba2ZrO4 was detected.This is correlated with the decrease of tolerance factor.As Zr content increased,there was an expansion of the b-axis and c-axis,and increase in the cell volume.Incorporation ...展开更多
The sintering behavior,microstructure and microwave dielectric properties of (1–x)CaTiO3–xLaAlO3 (x=0.1,0.3,0.5,0.7,0.9,respectively) ceramics were investigated systematically by thermogravimetry-differential th...The sintering behavior,microstructure and microwave dielectric properties of (1–x)CaTiO3–xLaAlO3 (x=0.1,0.3,0.5,0.7,0.9,respectively) ceramics were investigated systematically by thermogravimetry-differential thermal analysis (TG-DSC),X-ray diffraction (XRD),scanning electron microscopy (SEM) and a network analyzer.The result showed that forming temperature of the perovskite type crystal increased with increasing of x value.0.9CaTiO3-0.1LaAlO3 ceramics were sintered well from 1 400 to 1 550 oC,its bulk density increased with sintering temperature,and microwave dielectric properties of the ceramics at 1 400 oC was shown as follows: relative dielectric constant εr= 45.1,Q×f= 46 087 GHz and τf=–14.1×10–6/oC,respectively.But 0.7CaTiO3-0.3LaAlO3 ceramics were sintered well only when sintering temperature rose to 1 500 oC.(1–x)CaTiO3–xLaAlO3 (x=0.5,0.7 and 0.9,respectively) were not sintered well up to 1 550 oC and the sintered samples exhibited porous characteristic and with low bulk density.展开更多
0.5 Ca(0.6La0.267TiO3-0.5 Ca(Mg1/3Nb2/3)O3(5 CLT-5 CMN) ceramics were prepared by a reaction-sintering process and their sintering characteristics, microwave dielectric properties were investigated in detail.With...0.5 Ca(0.6La0.267TiO3-0.5 Ca(Mg1/3Nb2/3)O3(5 CLT-5 CMN) ceramics were prepared by a reaction-sintering process and their sintering characteristics, microwave dielectric properties were investigated in detail.Without any calcination stage involved,a mixture of CaCO_3, La_2 O_3, TiO_2, MgO and Nb_2 O_5 was pressed and sintered directly. Pure phase 5 CLT-5 CMN ceramics with high density and dense microstructure can be obtained after sintered at 1400 ℃ for 4 h. Compared with those prepared by the conventional ceramic route, 5 CLT-5 CMN ceramics produced by the reaction-sintering process exhibit slightly higher dielectric constant and Q×f value. Fine microwave dielectric properties of ε_r= 56.4, Q×f= 48,550 GHz and T_f = +8.7 ppm/℃ for 5 CLT-5 CMN ceramics sintered at 1400 ℃ for 4 h are obtained, suggesting reactionsintering process is a simple and efficient method to produce pure phase 5 CLT-5 CMN ceramics as a potential candidate for the fabrication of microwave devices.展开更多
The single-phase Ba(Mg_(1/3)Nb_(2/3))O_3(BMN) powder was successfully prepared by the KCl molten salt synthesis(MSS) method.The temperature for single-phase BMN powders by MSS was about 400℃ lower than that by the so...The single-phase Ba(Mg_(1/3)Nb_(2/3))O_3(BMN) powder was successfully prepared by the KCl molten salt synthesis(MSS) method.The temperature for single-phase BMN powders by MSS was about 400℃ lower than that by the solid-phase method.The average particle size(APS) was about 0.91μm at 900℃ and increased with increasing synthesis temperature.Based on the APS,the activation energy for particle growth in the MSS,whose value was 64.1kJmol^(-1),was attained.The sinterability of the powder prepared by MSS method was better than that prepared by solid-phase method.展开更多
Non-stoichiometric Nd_((1+x))(Mg_(1/2)Sn_(1/2))O_(3)(-0.04=x≤0.04,NMS)ceramics were fabricated via a conventional solid-state reaction method.Crystal structures and morphologies were investigated by Xray diffraction(...Non-stoichiometric Nd_((1+x))(Mg_(1/2)Sn_(1/2))O_(3)(-0.04=x≤0.04,NMS)ceramics were fabricated via a conventional solid-state reaction method.Crystal structures and morphologies were investigated by Xray diffraction(XRD)and scanning electron microscopy(SEM),respectively.The main crystalline phase is monoclinic Nd(Mg_(1/2)Sn_(1/2))O_(3) with a double perovskite structure(P21/n space group)for the NMS system proved by XRD.The sample at x=0.01 has the best crystallinity and evenly distributed crystal grains observed by SEM.The optimum performances(ε_(r)=19.87,Q×f=41840 GHz,f=12.05 GHz)are obtained at x=0.01.Lattice vibrational modes of the Raman spectra were assigned and illustrated,in detail.The dielectric properties obtained by fitting infrared reflectance spectra with the help of four-parameter semi-quantum model are consistent with the calculated values by microscopic polarization and damping coefficients.The reverse translational vibration of the NdeMgO_(6),the F_(5u)^((5)) mode,provides the greatest contribution to the dielectric response.The relationships between crystal structures and dielectric properties were mainly established using lattice vibrational modes as a media.展开更多
基金supported by the National Natural Science Foundation of China(Nos.61761015 and 11664008)the Natural Science Foundation of Guangxi(No.2018GXNSFFA050001)the High Level Innovation Team and Outstanding Scholar Program of Guangxi Institutes.
文摘Microwave dielectric ceramics should be improved to advance mobile communication technologies further.In this study,we prepared Sr_(1+x)Y_(2)O_(4+x)(x=0-0.04)ceramics with nonstoichiometric Sr^(2+)ratios based on our previously reported SrY_(2)O_(4) microwave dielectric ceramic,which has a low dielectric constant and an ultrahigh quality factor(Q value).The ceramic exhibited a 33.6% higher Q-by-frequency(Q×f)value(Q≈12,500)at x=0.02 than SrY_(2)O_(4).All Sr_(1+x)Y_(2)O_(4+x)(x=0-0.04)ceramics exhibited pure phase structures,although variations in crystal-plane spacings were observed.The ceramics are mainly composed of Sr-O,Y1-O,and Y_(2)-O octahedra,with the temperature coefficient of the resonant frequency(τ_(f))of the ceramic increasing with Y_(2)-O octahedral distortion.The ceramic comprises uniform grains with a homogeneous elemental distribution,clear grain boundaries,and no obvious cavities at x=0.02.The Sr_(1+x)Y_(2)O_(4+x)(x=0-0.04)ceramics exhibited good microwave dielectric properties,with optimal performance observed at x=0.02(dielectric constant(εr)=15.41,Q×f=112,375 GHz,and τ_(f)=-17.44 ppm/℃).The τ_(f) value was reduced to meet the temperaturestability requirements of 5G/6G communication systems by adding CaTiO_(3),with Sr_(1.02)Y_(2)O_(4.02)+2wt% CaTiO_(3) exhibiting ε_(r)=16.14,Q×f=51,004 GHz,andτf=0 ppm/℃.A dielectric resonator antenna prepared using Sr_(1.02)Y_(2)O_(4.02)+2wt%CaTiO_(3) exhibited a central frequency of 26.6 GHz,with a corresponding gain and efficiency of 3.66 dBi and 83.14%,respectively.Consequently,Sr_(1.02)Y_(2)O_(4).02-based dielectric resonator antennas are suitable for use in 5G millimeter-wave band(24.5-27.5 GHz)applications.
基金the Chengdu University of Technology(Grant No.KYQD201907728)。
文摘A series of nominal compositions MgAl_(2-x)(Li_(1/3)Ti_(2/3))_(x)O_(4)(x=0,0.04,0.08,0.12,0.16,and 0.20)ceramics were successfully prepared via the conventional solid-state reaction route.The phase compositions,microstructures,and microwave dielectric properties were investigated.The results of x-ray diffraction(XRD)and scanning electron microscopy(SEM)showed that a single phase of MgAl_(2-x)(Li_(1/3)Ti_(2/3))_(x)O_(4)ceramics with a spinel structure was obtained at x≤0.12,whereas the second phase of MgTi_(2)O_(5)appeared when x>0.12.The cell parameters were obtained by XRD refinement.As the x values increased,the unit cell volume kept expanding.This phenomenon could be attributed to the partial substitution of(Li_(1/3)Ti_(2/3))^(3+)for Al^(3+).Results showed that(Li_(1/3)Ti_(2/3))^(3+)doping into MgAl_(2)O_(4)spinel ceramics effectively reduced the sintering temperature and improved the quality factor(Q_f)values.Good microwave dielectric properties were achieved for a sample at x=0.20 sintering at 1500℃in air for 4 h:dielectric constantε_(r)=8.78,temperature coefficient of resonant frequencyτ_(f)=-85 ppm/℃,and Q_(f)=62300 GHz.The Q_(f)value of the x=0.20 sample was about 2 times higher than that of pure MgAl_(2)O_(4)ceramics(31600 GHz).Thus,MgAl_(2-x)(Li_(1/3)Ti_(2/3))_(x)O_(4)ceramics with excellent microwave dielectric properties can be applied to 5G communications.
基金supported by the National Natural Science Foundation of China(Grant No.51872037).
文摘The explosive process of 5G communication evokes the urgent demand of miniaturized and integrated dielectric ceramics filter It is a pressing need to advance the development of dielectric ceramics utilization of emerging technology to design new materials and understand the polarization mechanism.This review provides the summary of the study of microwave dielectric ceramics(MWDCs)sintered higher than 1000℃ from 2010 up to now,with the purpose of taking a broad and historical view of these ceramics and illustrating research directions.To date,researchers endeavor to explain the structure-property relationship of ceramics with multitude of approaches and design a new formula or strategy to obtain excellent microwave dielectric properties.There are variety of factors that impact the permittivity,dielectric loss,and temperature stability of dielectric materials,covering intrinsic and extrinsic factors.Many of these factors are often intertwined,which can complicate new dielectric material discovery and the mechanism investigation.Because of the various ceramics systems,pseudo phase diagram was used to classify the dielectric materials based on the composition.In this review,the ceramics were firstly divided into ternary systems,and then brief description of the experimental probes and complementary theoretical methods that have been used to discern the intrinsic polarization mechanisms and the origin of intrinsic loss was mentioned.Finally,some perspectives on the future outlook for high-temperature MWDCs were offered based on the synthesis method,characterization techniques,and significant theory developments.
基金The authors would like to acknowledge the supports from the Key-Area Research and Development Program of Guangdong Province(2020B010176001)the National Natural Science Foundation of China(61871369)M.S.Ma acknowledges the Youth Innovation Promotion Association of CAS and Shanghai Rising-Star Program(20QA1410200).
文摘Low permittivity microwave dielectric ceramics(MWDCs)are attracting great interest because of their promising applications in the new era of 5G and IoT.Although theoretical rules and computational methods are of practical use for permittivity prediction,unsatisfactory predictability and universality impede rational design of new high-performance materials.In this work,based on a dataset of 254 single-phase microwave dielectric ceramics(MWDCs),machine learning(ML)methods established a high accuracy model for permittivity prediction and gave insights of quantitative chemistry/structureproperty relationships.We employed five commonly-used algorithms,and introduced 32 intrinsic chemical,structural and thermodynamic features which have correlations with permittivity for modeling.Machine learning results help identify the permittivity decisive factors,including polarizability per unit volume,average bond length,and average cell volume per atom.The feature-property relationships were discussed.The optimal model constructed by support vector regression with radial basis function kernel was validated its superior predictability and generalization by verification dataset.Low permittivity material systems were screened from a dataset of~3300 materials without reported microwave permittivity by high-throughput prediction using optimal model.Several predicted low permittivity ceramics were synthesized,and the experimental results agree well with ML prediction,which confirmed the reliability of the prediction model.
基金supported by National Key Research and Development Program of China under Grant No.2017YFB0406301Natural Science Foundation of Zhejiang Province under Grant No.LY17E020004.
文摘With the rapid development of mobile communication technology towards 5G and 6G,the microwave dielectric materials with ultra-low permittivity and ultra-high Qf value are urgently demanded.Here,the excellent microwave dielectric properties are reported in H3BO3 ceramics with the molecular crystal structure,whose permittivity(2.84)and density(1.46 g/cm^(3))are record-low among the low-loss ceramics.The ultra-high Qf value of 146,000 GHz(or the ultra-low dielectric loss of 1.03×10^(-4) at 15 GHz)is also distinguished.Besides,the H_(3)BO_(3) ceramics can be densified at room temperature by a simple cold sintering process in a short time of 10 min,and this brings many advantages for the integration with microwave circuits.The large molecule volume originating from the molecular crystal structure and the low dielectric polarizabilities of H^(+) and B^(3+) are responsible for the ultra-low permittivity of H_(3)BO_(3) ceramics,and more microwave dielectric materials with ultra-low permittivity and ultra-high Qf value are expected to be explored in the molecular crystals.
基金Project supported by the National Science Foundation (50272044) of China
文摘La_2O_3-doped CaO-MgO-Nb_2O_5-TiO_2 system ceramics were prepared by solid-state ceramic technique. The microstructure and microwave dielectric properties of CaO-MgO-Nb_2O_5-TiO_2-La_2O_3 ceramics can be adjusted by varying the amount of La^(3+) ions. The results show that the replacement of Ca^(2+) by La^(3+) at A-site of the ceramics can increase the quality factor Q·f value as well as the temperature coefficient of resonant frequency τ_f and decrease the dielectric constant ε_r. With increase of La^(3+) contents, the dielectric constant decreases from 57 to 35 and Q·f value increases from 33400 GHz to 35000 GHz (at 7.6 GHz). Meanwhile, the temperature coefficient of resonant frequency is improved towards near zero. The dielectric properties of these compounds are related to octahedra tilting due to deficient vacancies at A-site.
文摘The effect of La^3 + , Sr^2+ on the microstructure and microwave properties of CaO-MgO-Nb2O5-TiO2 system ceramics was investigated. The result shows that a single complex perovskite structure formed within investigated composition range in La^3+ , Sr2-doped CaO-MgO-Nb2O5-TiO2 system ceramics. With increasing of La^3+ , Sr^2+ content, the structure of La^3+ , Sr2-doped CaO-MgO-Nb2O5-TiO2 system ceramic respectively maintain orthorhombic type.
文摘La2O3 and SrO-doped CaO-MgO-Nb2O3-TiO2 system ceramics were prepared by solid-state ceramic technique.The microstructure and microwave dielectric properties of CaO-MgO-Nb2O5-TiO2-La2O3 cermics can be adjusted by varying the amount of La^3+ or Sr^2+ ions respectively.The replacement of Ca^2+ by La^3+ at A-site of the ceramics increases the quality factor Q value( at 7.6GHz)as well as the temperature coefficient of resonant frequency τf and decreases the dielectric constant εr and the substitution of Sr^2+ at A-site in this ceramics system exhibits opposite characteristics.The microwave properties of La^3+,Sr^2+-doped CaO-MgO-Nb2O5-TiO2 system ceramics depend on the degree of octahedral distortion inside materials.
基金This work was supported by the National Natural Science Foundation of China(No.52102129)the Hunan Provincial Natural Science Foundation of China(No.2023JJ30138)the science and technology innovation Program of Hunan Province(No.2023RC3094).
文摘Research on doping modification of ZnTiO_(3) ceramics to enhance microwave dielectric properties has been hindered by poor performance,unclear structure-function mechanisms.To expand the applicability of ZnTiO_(3) ceramics,this study explores Zn_(1-x)Li_(2x)TiO_(3)(O≤×≤1)ceramics using a phase engineering strategy.Our findings reveal that the introduction of Lit into the ZnTiO_(3) system initiates a multiple phase transition,starting at x=0.1.Initially,ilmenite ZnTiO_(3) transforms into a cubic ordered spinel phase(space group P4332).Subsequently,a transition to a disordered spinel phase(space group Fd3m)occurs at x=0.5,culminating in the formation of a monoclinic rock salt-structured LizTiO3 phase.Significantly,two sets of ceramics with near-zero temperature coefficients of resonance frequency(t:)were obtained at x=0.1 and 0.75.Moreover,the quality factor(Qxf)demonstrated a 4.4-fold increase compared to that of ZnTiO_(3) ceramics at x=0.25(105,013 GHz).Additionally,it was observed that the Ti4 polarization in Zn_(1-x)Li_(2x)TiO_(3) ceramics was underestimated by 11.3%-13.3%,causing the measured dielectric constant(e.)exceeding the theoretical dielectric constant(eth).The ionic polarizability of Ti*was adjusted to stabilize around 3.29 A.Evaluation using multiple methods,including Phillips-van Vechten-Levine(P-V-L)theory,Raman vibrational mode analysis,bond valence,bond energy theory,and octahedral distortion,confirms that the Ti-O bonds within the octahedron predominantly affect&r,the increasing lattice energy(U)contributes to the enhancement of Qxf,and the strengthened Li-O bond energy effectively regulates Tr.
基金supported by the National Natural Science Foundation of China (Nos.51972143 and 52272126)State Key Laboratory of New Ceramics and Fine Processing,Tsinghua University (No.KFZD202101).
文摘Microwave dielectric ceramics(MWDCs)with low dielectric constant and low dielectric loss are desired in contemporary society,where the communication frequency is developing to high frequency(sub-6G).Herein,Nd_(2)(Zr_(1−x)Ti_(x))_(3)(MoO_(4))_(9)(NZ_(1−x)T_(x)M,x=0.02-0.10)ceramics were prepared through a solid-phase process.According to X-ray diffraction(XRD)patterns,the ceramics could form a pure crystal structure with the R3c(167)space group.The internal parameters affecting the properties of the ceramics were calculated and analyzed by employing Clausius-Mossotti relationship,Shannon’s rule,and Phillips-van Vechten-Levine(P-V-L)theory.Furthermore,theoretical dielectric loss of the ceramics was measured and analyzed by a Fourier transform infrared(IR)radiation spectrometer.Notably,when x=0.08 and sintered at 700℃,optimal microwave dielectric properties of the ceramics were obtained,including a dielectric constant(ε_(r))=10.94,Q·f=82,525 GHz(at 9.62 GHz),and near-zero resonant frequency temperature coefficient(τ_(f))=−12.99 ppm/℃.This study not only obtained an MWDC with excellent properties but also deeply analyzed the effects of Ti^(4+)on the microwave dielectric properties and chemical bond characteristics of Nd_(2)Zr_(3)(MoO_(4))_(9)(NZM),which laid a solid foundation for the development of rare-earth molybdate MWDC system.
基金This work was supported by Shandong Postdoctoral Innovative Talents Support Plan(No.SDBX2020010)the National Natural Science Foundation of China(No.U1806221)+2 种基金Shandong Provincial Natural Science Foundation(No.ZR2020KA003)the Project of“20 Items of University”of Jinan(No.2019GXRC017)This work was also supported by the National Natural Science Foundation of China(No.51972143).
文摘Dense microwave dielectric ceramics of Ce_(2)[Zr_(1−x)(Al_(1/2)Ta_(1/2))_(x)]_(3)(MoO_(4))_(9)(CZMAT) (x = 0.02–0.10) were prepared by the conventional solid-state route. The effects of (Al1/2Ta1/2)^(4+) on their microstructures, sintering behaviors, and microwave dielectric properties were systematically investigated. On the basis of the X-ray diffraction (XRD) results, all the samples were matched well with Pr_(2)Zr_(3)(MoO_(4))_(9) structures, which belonged to the space group R3¯c. The lattice parameters were obtained using the Rietveld refinement method. The correlations between the chemical bond parameters and microwave dielectric properties were calculated and analyzed by using the Phillips—Van Vechten—Levine (P—V—L) theory. Excellent dielectric properties of Ce_(2)[Zr_(0.94)(Al_(1/2)Ta_(1/2))_(0.06)]_(3)(MoO_(4))_(9) with a relative permittivity (ε_(r)) of 10.46, quality factor (Q × f) of 83,796 GHz, and temperature coefficient of resonant frequency (τ_(f)) of −11.50 ppm/℃ were achieved at 850 ℃.
基金This work was supported by the National Key R&D Program of China(No.2017YFB0406301)the Key-Area Research and Development Program of Guangdong Province(No.2020B010176001)the National Natural Science Foundation of China(No.51872160).
文摘Low-loss tungsten–bronze microwave dielectric ceramics are dielectric materials with potential application value for miniaturized dielectric filters and antennas in the fifth-generation(5G)communication technology.In this work,a novel Al/Nd co-doping method of Ba_(4)Nd_(9.33)Ti_(18)O_(54)(BNT)ceramics with a chemical formula of Ba_(4)Nd_(9.33+z/3)Ti_(18−z)Al_(z)O_(54)(BNT–AN,0≤z≤2)was proposed to improve the dielectric properties through structural and defect modulation.Together with Al-doped ceramics(Ba_(4)Nd_(9.33)Ti_(18−z)Al_(4z/3)O_(54),BNT–A,0≤z≤2)for comparison,the ceramics were prepared by a solid state method.It is found that Al/Nd co-doping method has a significant effect on improving the dielectric properties compared with Al doping.As the doping amount z increased,the relative dielectric constant(εr)and the temperature coefficient of resonant frequency(τf)of the ceramics decreased,and the Q×f values of the ceramics obviously increased when z≤1.5.Excellent microwave dielectric properties ofεr=72.2,Q×f=16,480 GHz,andτf=+14.3 ppm/℃were achieved in BNT–AN ceramics with z=1.25.Raman spectroscopy and thermally stimulated depolarization current(TSDC)technique were firstly combined to analyze the structures and defects in microwave dielectric ceramics.It is shown that the improvement on Q×f values was originated from the decrease in the strength of the A-site cation vibration and the concentration of oxygen vacancies(VO××),demonstrating the effect and mechanism underlying for structural and defect modulation on the performance improvement of microwave dielectric ceramics.
基金supported by the National Natural Science Foundation of China(NSFC-51572093,51772107 and 61771215)Research Project of Electronic Components and Devices of China(1807WM0004)the Major Programs of Technical Innovation in Hubei Province of China(2018AAA039).
文摘Ba_(1-x)Sr_(x)CuSi_(2)O_(6) compounds with a tetrahedral structure(I41/acd)were prepared through the solid-state reaction method.The phase building process,structural evolution and microwave dielectric properties of Ba_(1-x)Sr_(x)CuSi_(2)O_(6) were investigated.Single BaCuSi_(2)O_(6) phase can be obtained when calcined at 1050℃ for 3 h or 950℃ for 10 h.The substitution of Ba^(2+) by Sr^(2+) can effectively promote the sintering process and the maximum solubility of Ba_(1-x)Sr_(x)CuSi_(2)O_(6) was located between 0.25 and 0.30.Rietveld refinement,Raman-spectra and P-V-L complex chemical bond theory were used to explain the correlations between the crystal structures and microwave dielectric properties.The dielectric constant was dominated by the susceptibility(Σχ^(μ))and ionic polarizability.The quality factor(Q×f)was determined by the bond strength,packing fraction and lattice energy,especially the Si-O bond.The susceptibility of Cu-O bond and Si-O bond played an important role in controlling the temperature coefficient of the resonant frequency(τf).A near zero τf value was obtained at x=0-0.10 and the optimum microwave dielectric properties for Ba_(1-x)Sr_(x)CuSi_(2)O_(6) were achieved at x=0.20 when sintered at 1000℃ for 3 h:ε_(r)=8.25,Q×f=47616 GHz and τf=9.6 ppm/℃.
文摘We prepared (1-x)CaTiO3-xLaAlO3 (0 ≤x≤ 1) microwave dielectric ceramics using a conventional two-step solid-state reaction method,and investigated microwave dielectric properties of the ceramics in terms of A/B-site ionic-parameters.Ionic-parameters such as ionic polarizability,A-site bond valence,and ionic rattling were linked to the microwave dielectric properties.As the LaAlO3 content x in the (1-x)CaTiO3-xLaAlO3 ceramics increased from 0.3 to 0.7,the dielectric constant gradually decreased,which was attributed to the decrease of polarizability deviation and suppression of the cation rattling.The temperature coefficient of the resonant frequency decreased as the content of LaAlO3 increased because of the increase of A-site cation bond valence.The quality factor value (Q × f) increased as LaAlO3 content increased because of the enhancement of the order degree of B-site cation.A significant deterioration of the temperature coefficient of the resonant frequency and Q ×fvalue was observed at the composition x =0.5.These decreases were attributed to a phase transition from orthorhombic crystal (for x ≤ 0.5) to rhombohedral crystal (for x > 0.5).
基金supported by National Natural Science Foundation of China(Grant 11874240)Shandong Provincial Key Research and Development Program,China(No.2019GGX101060).
文摘Sr_(2)MgWO_(6)(SMW)is a typical perovskite oxide compound,but there has been little research on the effects of processing on its dielectric properties.In this work,SMW ceramics were prepared by solid-state synthesis with sintering at 1450℃,1475℃,1500℃and 1525℃,respectively.XRD results confirmed that the samples possessed double perovskite structure(Fm-3m).The Raman and FTIR spectra were used to study the lattice vibrational modes.The FPSQ model was used to obtain the fitting curves of the FTIR spectra and derive the intrinsic properties of the material that were found to be in agreement with the measured data.The structure-property relationships were successfully established based on the Raman mode results.The optimal sintering temperature of SMW ceramics was identified as 1475℃due to the excellent performances characteristics(ε_(r)=16.97,Q×f=23,872 GHz,τ_(f)=-35.38 ppm/℃)obtained at this temperature.This study explored the relationships among the crystal structures,lattice vibrational characteristics and dielectric properties of SMW ceramics,so as to further understand their dielectric response mechanism and lay a solid theoretical foundation for the development of microwave ceramics.
文摘Zr substitution for Ti was investigated to modify the dielectric properties of Ba6-3xLa8+2xTi18O54(x=2/3) ceramics.A single-phase solid solution with tungstenbronze-like structure was formed in the range of 0<z<0.2 in Ba6-3xLa8+2x(Ti1-zZrz)18O54 ceramics.As Zr content exceeded this range,a secondary phase of Ba2ZrO4 was detected.This is correlated with the decrease of tolerance factor.As Zr content increased,there was an expansion of the b-axis and c-axis,and increase in the cell volume.Incorporation ...
基金Project supported by the Sci-Tech Development Support Program of Jiangsu Province (BE2008653)Major Basic Research Project of Natural Science Foundation of Jiangsu Provincial Education Department (08KJA430005)
文摘The sintering behavior,microstructure and microwave dielectric properties of (1–x)CaTiO3–xLaAlO3 (x=0.1,0.3,0.5,0.7,0.9,respectively) ceramics were investigated systematically by thermogravimetry-differential thermal analysis (TG-DSC),X-ray diffraction (XRD),scanning electron microscopy (SEM) and a network analyzer.The result showed that forming temperature of the perovskite type crystal increased with increasing of x value.0.9CaTiO3-0.1LaAlO3 ceramics were sintered well from 1 400 to 1 550 oC,its bulk density increased with sintering temperature,and microwave dielectric properties of the ceramics at 1 400 oC was shown as follows: relative dielectric constant εr= 45.1,Q×f= 46 087 GHz and τf=–14.1×10–6/oC,respectively.But 0.7CaTiO3-0.3LaAlO3 ceramics were sintered well only when sintering temperature rose to 1 500 oC.(1–x)CaTiO3–xLaAlO3 (x=0.5,0.7 and 0.9,respectively) were not sintered well up to 1 550 oC and the sintered samples exhibited porous characteristic and with low bulk density.
基金Project supported by Anhui Provincial Natural Science Foundation(1608085ME92)
文摘0.5 Ca(0.6La0.267TiO3-0.5 Ca(Mg1/3Nb2/3)O3(5 CLT-5 CMN) ceramics were prepared by a reaction-sintering process and their sintering characteristics, microwave dielectric properties were investigated in detail.Without any calcination stage involved,a mixture of CaCO_3, La_2 O_3, TiO_2, MgO and Nb_2 O_5 was pressed and sintered directly. Pure phase 5 CLT-5 CMN ceramics with high density and dense microstructure can be obtained after sintered at 1400 ℃ for 4 h. Compared with those prepared by the conventional ceramic route, 5 CLT-5 CMN ceramics produced by the reaction-sintering process exhibit slightly higher dielectric constant and Q×f value. Fine microwave dielectric properties of ε_r= 56.4, Q×f= 48,550 GHz and T_f = +8.7 ppm/℃ for 5 CLT-5 CMN ceramics sintered at 1400 ℃ for 4 h are obtained, suggesting reactionsintering process is a simple and efficient method to produce pure phase 5 CLT-5 CMN ceramics as a potential candidate for the fabrication of microwave devices.
基金FinanciallysupportedbytheMinistryofEducationofChi na .
文摘The single-phase Ba(Mg_(1/3)Nb_(2/3))O_3(BMN) powder was successfully prepared by the KCl molten salt synthesis(MSS) method.The temperature for single-phase BMN powders by MSS was about 400℃ lower than that by the solid-phase method.The average particle size(APS) was about 0.91μm at 900℃ and increased with increasing synthesis temperature.Based on the APS,the activation energy for particle growth in the MSS,whose value was 64.1kJmol^(-1),was attained.The sinterability of the powder prepared by MSS method was better than that prepared by solid-phase method.
基金supported by National Natural Science Foundation of China(Grant 11874240)Guangxi Information Materials Key Laboratory Open Research Fund(171007-K)+3 种基金State Key Laboratory of New Ceramic and Fine Processing Tsinghua University(No.KF201811)the Opening Project of Key Laboratory of Inorganic Functional Materials and Devices,Chinese Academy of Sciences(Grant No.KLIFMD201803)the Natural Science Foundation of Shandong Province,China(No.ZR2016EMM21)Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents(No.2016RCJJ002).
文摘Non-stoichiometric Nd_((1+x))(Mg_(1/2)Sn_(1/2))O_(3)(-0.04=x≤0.04,NMS)ceramics were fabricated via a conventional solid-state reaction method.Crystal structures and morphologies were investigated by Xray diffraction(XRD)and scanning electron microscopy(SEM),respectively.The main crystalline phase is monoclinic Nd(Mg_(1/2)Sn_(1/2))O_(3) with a double perovskite structure(P21/n space group)for the NMS system proved by XRD.The sample at x=0.01 has the best crystallinity and evenly distributed crystal grains observed by SEM.The optimum performances(ε_(r)=19.87,Q×f=41840 GHz,f=12.05 GHz)are obtained at x=0.01.Lattice vibrational modes of the Raman spectra were assigned and illustrated,in detail.The dielectric properties obtained by fitting infrared reflectance spectra with the help of four-parameter semi-quantum model are consistent with the calculated values by microscopic polarization and damping coefficients.The reverse translational vibration of the NdeMgO_(6),the F_(5u)^((5)) mode,provides the greatest contribution to the dielectric response.The relationships between crystal structures and dielectric properties were mainly established using lattice vibrational modes as a media.