This study focused on the investigation of the edge effect of diamond films deposited by microwave plasma chemical vapor de-position.Substrate bulge height△h is a factor that affects the edge effect,and it was used t...This study focused on the investigation of the edge effect of diamond films deposited by microwave plasma chemical vapor de-position.Substrate bulge height△h is a factor that affects the edge effect,and it was used to simulate plasma and guide the diamond-film deposition experiments.Finite-element software COMSOL Multiphysics was used to construct a multiphysics(electromagnetic,plasma,and fluid heat transfer fields)coupling model based on electron collision reaction.Raman spectroscopy and scanning electron microscopy were performed to characterize the experimental growth and validate the model.The simulation results reflected the experimental trends observed.Plasma discharge at the edge of the substrate accelerated due to the increase in△h(△h=0-3 mm),and the values of electron density(n_(c)),molar concentration of H(C_(H)),and molar concentration of CH_(3)(C_(CH_(3)))doubled at the edge(for the special concave sample with△h=−1 mm,the active chemical groups exhibited a decreased molar concentration at the edge of the substrate).At=0-3 mm,a high diamond growth rate and a large diamond grain size were observed at the edge of the substrate,and their values increased with.The uniformity of film thickness decreased with.The Raman spectra of all samples revealed the first-order characteristic peak of dia-mond near 1332 cm^(−1).When△h=−1 mm,tensile stress occurred in all regions of the film.When△h=1-3 mm,all areas in the film ex-hibited compressive stress.展开更多
Ternary Ti-B-N coatings were synthesized on AISI 304 and Si wafer by plasma-enhanced chemical vapor deposition (PECVD) technique using a gaseous mixture of TiCl4,BCl3,H2,N2,and Ar.By virtue of X-ray diffraction analys...Ternary Ti-B-N coatings were synthesized on AISI 304 and Si wafer by plasma-enhanced chemical vapor deposition (PECVD) technique using a gaseous mixture of TiCl4,BCl3,H2,N2,and Ar.By virtue of X-ray diffraction analysis,X-ray photoelectron spectroscopy,scanning electron microscope,and high-resolution transmission electron microscope,the influences of B content on the microstructure and properties of Ti B N coatings were investigated systematically.The results indicated that the microstructure and mechanical properties of Ti-B-N coatings largely depend on the transformation from FCC-TiN phase to HCP-TiB2 phase.With increasing B content and decreasing N content in the coatings,the coating microstructure evolves gradually from FCC-TiN/a-BN to HCP-TiB2 /a-BN via FCC-TiN+HCP-TiB2/a-BN.The highest microhardness of about 34 GPa is achieved,which corresponds to the nanocomposite Ti-63%B-N (mole fraction) coating consisting of the HCP-TiB2 nano-crystallites and amorphous BN phase.The lowest friction-coefficient was observed for the nanocomposite Ti-41%B-N (mole fraction) coating consisting of the FCC-TiN nanocrystallites and amorphous BN展开更多
Diamond films with very smooth surface and good optical quality have been deposited onto silicon substrate using microwave plasma chemical vapor deposition (MPCVD) from a gas mixture of ethanol and hydrogen at a low s...Diamond films with very smooth surface and good optical quality have been deposited onto silicon substrate using microwave plasma chemical vapor deposition (MPCVD) from a gas mixture of ethanol and hydrogen at a low substrate temperature of 450 ℃. The effects of the substrate temperature on the diamond nucleation and the morphology of the diamond film have been investigated and observed with scanning electron microscopy (SEM). The microstructure and the phase of the film have been characterized using Raman spectroscopy and X-ray diffraction (XRD). The diamond nucleation density significantly decreases with the increasing of the substrate temperature. There are only sparse nuclei when the substrate temperature is higher than 800 ℃ although the ethanol concentration in hydrogen is very high. That the characteristic diamond peak in the Raman spectrum of a diamond film prepared at a low substrate temperature of 450 ℃ extends into broadband indicates that the film is of nanophase. No graphite peak appeared in the XRD pattern confirms that the film is mainly composed of SP3 carbon. The diamond peak in the XRD pattern also broadens due to the nanocrystalline of the film.展开更多
Due to its unique properties such as high hardness, light transmittance, thermal conductance, chemical stability and corrosion resistance, diamond has drawn tremendous attention in last two decades. These specific pro...Due to its unique properties such as high hardness, light transmittance, thermal conductance, chemical stability and corrosion resistance, diamond has drawn tremendous attention in last two decades. These specific properties made diamond film a promising material for cutting tools, microwave windows, heat sinks for electronic devices and diamond electrodes. However, the diamond film with grain sizes at microscale usually exhibits high surface roughness and hinders its applications in the microelectro mechanical system (MEMS) and biological field because it is difficult to be polished by mechanical and chemical methods. With the development of the chemical vapor deposition, the nanocrystalline diamond (NCD) film has been fabricated and found new applications. The grain size of NCD film is in the range of 10 to 100 nm, which inherits the properties of the diamond and possesses the unique properties of the nanoscale materials, and the morphology of the NCD film is granular or needle-like structure. The microwave plasma chemical vapor deposition (MPCVD) has been regarded as the most promising method to deposit NCD film at low temperature. Compared to the hot filament CVD, MPCVD can grow high quality NCD film avoiding of the contamination from the filament materials. The MPCVD technique has high plasma density to activate carbonaceous compound and grow NCD film in high growth rate and low substrate temperature. The unique properties of NCD film, such as the superior electrical, mechanical and biological properties facilitate their application in various fields. The biological application, especially as a biocompatible coating, mainly includes the joint replacement implants and protective coatings and the ophthalmological prosthesis.展开更多
Aligned carbon nanotubes (CNTs) were synthesized on glass by microwave plasma chemical vapor deposition (MWPCVD) with a mixture of methane and hydrogen gases at the low temperature of 550 ℃. The experimental results ...Aligned carbon nanotubes (CNTs) were synthesized on glass by microwave plasma chemical vapor deposition (MWPCVD) with a mixture of methane and hydrogen gases at the low temperature of 550 ℃. The experimental results show that both the self-bias potential and the density of the catalyst particles are responsible for the alignment of CNTs. When the catalyst particle density is high enough, strong interactions among the CNTs can inhibit CNTs from growing randomly and result in parallel alignment.展开更多
Nano-crystalline diamond (NCD) films were prepared on poly-crystalline diamond (PCD) thick flims by the microwave plasma enhanced chemical vapor deposition (MPCVD) method. Free standing PCD thick film (50 mm in...Nano-crystalline diamond (NCD) films were prepared on poly-crystalline diamond (PCD) thick flims by the microwave plasma enhanced chemical vapor deposition (MPCVD) method. Free standing PCD thick film (50 mm in diameter) with a thickness of 413 μm was deposited in CHn/H2 plasma. It was then abraded for 2 hours and finally cut into pieces in a size of 10×10 mm^2 by pulse laser. NCD fihns were deposited on the thick film substrates by introducing a micro-crystalline diamond (MCD) interlayer. Results showed that a higher carbon concentration (5%) and a lower substrate temperature (650℃) were feasible to obtain a highly smooth interlayer, and the appropriate addition of oxygen (2%) into the gas mixture was conducive to obtaining a smooth nano-crystalline diamond film with a tiny grain size.展开更多
Using a low power microwave generator(W_(max)=100W) and a Surfatron discharge device, Plasma-polymerized copper phthalocyanine (PPCuPc) film was synthesised from monomer copper phthalocyanine(CuPc) by microwave plasma...Using a low power microwave generator(W_(max)=100W) and a Surfatron discharge device, Plasma-polymerized copper phthalocyanine (PPCuPc) film was synthesised from monomer copper phthalocyanine(CuPc) by microwave plasma chemical vaporization deposition(MPCVD) with Ar as incorporation gas. The film was characterized by FTIR and ESCA. The role of dissociation of chemical bond in the polymerization process and the influence of substrate temperature and material on deposition were investigated in some detail.展开更多
The hydrophobic films of TixOy-CmHn. deposited from mixture gases of titanium isopropoxide (TTIP) and oxygen by plasma enhanced chemical vapor deposition (PECVD) were investigated. The films were investigated by s...The hydrophobic films of TixOy-CmHn. deposited from mixture gases of titanium isopropoxide (TTIP) and oxygen by plasma enhanced chemical vapor deposition (PECVD) were investigated. The films were investigated by scanning electron microscope ( SEM ), transmission electron microscope ( TEM ), Fourier transform infrared spectrometer ( FTIR), X-Ray diffraction ( XRD ), element analysis ( EA ), ultraviolet visible spectrometer ( UV-Vis), and water contact angle (WCA). The results reveal that the surface of the films is formed by mierosized papillaes aggregated by inorganic and organic phases of complex nanoparticles with size from 50 nm to 200 nm when the discharge power is increased from 40 W to 150 W. All fdms demonstrate the strong broad of Ti-O-Ti stretching vibration at 400 -800cm-1, -CH bending vibration at 1 388 cm -1, and broadening -OH stretching vibration at 3 000-3500 cm-1 With the increase of the discharge power, the asdeposited film changes from amorphous to crystallization. The WCA of the film can be as high as 160°, indicating the hydrophobicity. The films show a similar ultraviolet absorption property as the bulk TiO2 film. The composition of the composition of film deposited at 150 W can be formulated as Tio.302-C1.5H3. Therefore, the composition formula of this hydrophobic film could be expressed as TiO2-C5H10O4.7. It is believed that the complex micro/nano structures of TiO2 and C5H10O4.7 residues are responsible for the observed hydrophobicity and the ultraviolet absorption property of the film.展开更多
Two-dimensional(2D)transition metal chalcogenides(TMCs)hold great promise as novel microwave absorption materials owing to their interlayer interactions and unique magnetoelectric properties.However,overcoming the imp...Two-dimensional(2D)transition metal chalcogenides(TMCs)hold great promise as novel microwave absorption materials owing to their interlayer interactions and unique magnetoelectric properties.However,overcoming the impedance mismatch at the low loading is still a challenge for TMCs due to the restricted loss pathways caused by their high-density characteristic.Here,an interface engineering based on the heterostructure of 2D Cr_(5)Te_(8) and graphite is in situ constructed via a one-step chemical vapor deposit to modulate impedance matching and introduce multiple attenuation mechanisms.Intriguingly,the Cr_(5)Te_(8)@EG(ECT)heterostructure exhibits a minimum reflection loss of up to−57.6 dB at 15.4 GHz with a thin thickness of only 1.4 mm under a low filling rate of 10%.The density functional theory calculations confirm that the splendid performance of ECT heterostructure primarily derives from charge redistribution at the abundant intimate interfaces,thereby reinforcing interfacial polarization loss.Furthermore,the ECT coating displays a remarkable radar cross section reduction of 31.9 dB m^(2),demonstrating a great radar microwave scattering ability.This work sheds light on the interfacial coupled stimulus response mechanism of TMC-based heterogeneous structures and provides a feasible strategy to manipulate high-quality TMCs for excellent microwave absorbers.展开更多
Catalyst-free and scalable synthesis of graphene on various glass substrates at low temperatures is of paramount significance to numerous applications such as low-cost transparent electronics and state-of-the-art disp...Catalyst-free and scalable synthesis of graphene on various glass substrates at low temperatures is of paramount significance to numerous applications such as low-cost transparent electronics and state-of-the-art displays. However, systematic study within this promising research field has remained scarce thus far. Herein, we report the direct growth of graphene on various glasses using a low-temperature plasma-enhanced chemical vapor deposition method. Such a facile and scalable approach guarantees the growth of uniform, transfer-free graphene films on various glass substrates at a growth temperature range of 400-600 ℃. The morphological, surface wetting, optical, and electrical properties of the obtained graphene can be tailored by controlling the growth parameters. Our uniform and high-quality graphene films directly integrated with low-cost, commonly used glasses show great potential in the fabrication of multi-functional electrodes for versatile applications in solar cells, transparent electronics, and smart windows.展开更多
The plasma-enhanced chemical vapor deposition(PECVD)technique is well suited for fabricating optical filters with continuously variable refractive index profiles;however,it is not clear how the optical and structural ...The plasma-enhanced chemical vapor deposition(PECVD)technique is well suited for fabricating optical filters with continuously variable refractive index profiles;however,it is not clear how the optical and structural properties of thin films differ when deposited on different substrates.Herein,silicon nitride films were deposited on silicon,fused silica,and glass substrates by PECVD,using silane and ammonia,to investigate the effects of the substrate used on the optical properties and structures of the films.All of the deposited films were amorphous.Further,the types and amounts of Si-centered tetrahedral Si–SivN4-v bonds formed were based upon the substrates used;Si–N4 bonds with higher elemental nitrogen content were formed on Si substrates,which lead to obtaining higher refractive indices,and the Si–SiN3 bonds were mainly formed on glass and fused silica substrates.The refractive indices of the films formed on the different substrates had a maximum difference of0.05(at 550 nm),the refractive index of SiNx films formed on silicon substrates was 1.83,and the refractive indices of films formed on glass were very close to those formed on fused silica.The deposition rates of these SiNx films are similar,and the extinction coefficients of all the films were lower than 10-4.展开更多
One of the most important factors that limits the use of LiFePO 4 as cathode material for lithium ion batteries is its low electronic conductivity.In order to solve this problem,LiFePO 4 in situ vapor-grown carbon fib...One of the most important factors that limits the use of LiFePO 4 as cathode material for lithium ion batteries is its low electronic conductivity.In order to solve this problem,LiFePO 4 in situ vapor-grown carbon fiber (VGCF) composite cathode material has been prepared in a single step through microwave pyrolysis chemical vapor deposition.The phase,microstructure,and electrochemical performance of the composites were investigated.Compared with the cathodes without in situ VGCF,the initial discharge capacity of the composite electrode increases from 109 to 144 mA h g-1 at a 0.5-C rate,and the total electric resistance decreases from 538 to 66.The possible reasons for these effects are proposed.展开更多
Boron-doped nano-crystalline diamond (NCD) thin films have been successfully deposited on well-polished poly-crystalline diamond (PCD) thick films in a microwave plasma enhanced chemical vapor deposition (MPCVD)...Boron-doped nano-crystalline diamond (NCD) thin films have been successfully deposited on well-polished poly-crystalline diamond (PCD) thick films in a microwave plasma enhanced chemical vapor deposition (MPCVD) reactor for the first time. Different surface pretreatment techniques are carried out under different gas conditions (CH4, H2, Ar, and CH4/H2) to eliminate the effect of grain boundaries on the growth of a smooth NCD intrinsic layer. Well doped NCD films have been fabricated in CH4/H2/B2H6 plasma by varying the atomic ratio of B/C and the substrate temperature. Atomic force microscopy (AFM) results show that pretreatment in pure CH4 plasma at 1000℃ is most effective for NCD growth, while hydrogen containing plasma is harmful to the surface smoothness of NCD thin fihns. Doping research indicates that the optimum parameters for the boron-doping of high-quality NCD thin films are B/C=300 ppm (10-6) and 800℃.展开更多
On the sand-blasting-treated titanium(Ti) substrate, the boron-doped diamond(BDD) electrodes with a wide potential window were prepared by microwave plasma chemical vapor deposition(MPCVD). The electrochemi- cal...On the sand-blasting-treated titanium(Ti) substrate, the boron-doped diamond(BDD) electrodes with a wide potential window were prepared by microwave plasma chemical vapor deposition(MPCVD). The electrochemi- cal oxidation ratios of phenol at BDD/Ti electrodes at elevated temperatures(from 20 ℃ to 80 ℃) were examined by the chemical oxygen demand(COD) of phenol electrolyte during electrolysis. The results show that the COD removal was increased at high temperatures and the optimized temperature for enhancing the electrochemical oxidation ratio of phenol is 60 ℃. The mechanism for the temperature-dependent electrochemical oxidation ratios of phenol at the electrodes was investigated. The study would be favorable for further improving the performance of BDD/Ti elec- trodes, especially working at high temperatures.展开更多
目的研究硅(Si)、氧(O)元素掺杂对类金刚石(Diamond like Carbon,DLC)薄膜沉积、结构、表面形貌以及阻隔性能的影响,为高效制备高阻隔硅氧共掺类金刚石(Si and O Incorporated DLC,Si/O-DLC)薄膜提供新的思路参考。方法利用微波等离子...目的研究硅(Si)、氧(O)元素掺杂对类金刚石(Diamond like Carbon,DLC)薄膜沉积、结构、表面形貌以及阻隔性能的影响,为高效制备高阻隔硅氧共掺类金刚石(Si and O Incorporated DLC,Si/O-DLC)薄膜提供新的思路参考。方法利用微波等离子体化学气相沉积(Plasma Enhanced Chemical Vapor Deposition,PECVD)技术在聚对苯二甲酸乙二醇酯(Polyethylene terephthalate,PET)基底表面沉积Si/O-DLC薄膜,具体研究反应单体中六甲基二硅氧烷(Hexaethyldisiloxane,HMDSO)含量对薄膜沉积和阻隔性能的影响。通过台阶仪、傅里叶红外光谱(FTIR)、X射线光电子能谱(XPS)、原子力显微镜(AFM)表征薄膜厚度、结构和微观形貌,并通过测试氧气透过率表征复合薄膜的阻隔性能。结果随着混合气体中HMDSO含量增加,薄膜的沉积速率提高,不同高度位置上沉积速率波动变弱,平均沉积速率最高达到310 nm·min^(–1),同时,薄膜中Si、O元素含量增加,相关的键合结构含量增加,薄膜表面致密性变差,氧气阻隔性能变弱;当HMDSO流量控制在1 mL·min^(–1)时,PET薄膜的氧气透过率可从未涂覆时的132mL·m^(2)·d^(–1)降低至2mL·m^(2)·d^(-1),阻隔性能明显改善。结论在一定工艺条件下,通过微波PECVD技术在PET薄膜表面涂覆Si/O-DLC薄膜,可明显改善其阻隔性能。展开更多
Titanium nitride films are prepared by plasma enhanced chemical vapor deposition method on titanium foil using N_(2) as precursor. In order to evaluate the effect of oxygen on the growth of titanium nitride films, a s...Titanium nitride films are prepared by plasma enhanced chemical vapor deposition method on titanium foil using N_(2) as precursor. In order to evaluate the effect of oxygen on the growth of titanium nitride films, a small amount of O_(2) is introduced into the preparation process. The study indicates that trace O_(2) addition into the reaction chamber gives rise to significant changes on the color and micro-morphology of the foil, featuring dense and long nano-wires. The as-synthesized nanostructures are characterized by various methods and identified as TiN, Ti_(2) N, and TiO_(2) respectively. Moreover, the experiment results show that oxide nanowire has a high degree of crystallinity and the nitrides present specific orientation relationships with the titanium matrix.展开更多
Raman spectra and scanning electron microscope (SEM) techniques were used to determine the structural properties of microcrb'stalline silicon (μc-Si:H) films deposited on different substrates with the very high...Raman spectra and scanning electron microscope (SEM) techniques were used to determine the structural properties of microcrb'stalline silicon (μc-Si:H) films deposited on different substrates with the very high frequency plasma-enhanced chemical vapor deposition (VHF-PECVD) technique. Using the Raman spectra, the values of crystalline volume fraction Xc and average grain size d are 86%, 12.3nm; 65%, 5.45nm; and 38%, 4.05nm, for single crystalline silicon wafer, coming 7059 glass, and general optical glass substrates, respectively. The SEM images further demonstrate the substrate effect on the film surface roughness. For the single crystalline silicon wafer and Coming 7059 glass, the surfaces of the μc-Si:H films are fairly smooth because of the homogenous growth or h'ttle lattice mismatch. But for general optical glass, the surface of the μ-Si: H film is very rough, thus the growing surface roughness affects the crystallization process and determines the average grain size of the deposited material. Moreover, with the measurements of thickness, photo and dark conductivity, photosensitivity and activation energy, the substrate effect on the deposition rate, optical and electrical properties of the μc-Si:H thin films have also been investigated. On the basis of the above results, it can be concluded that the substrates affect the initial growing layers acting as a seed for the formation of a crystalline-like material and then the deposition rates, optical and electrical properties are also strongly influenced, hence, deposition parameter optimization is the key method that can be used to obtain a good initial growing layer, to realize the deposition of μc-Si:H films with device-grade quality on cheap substrates such as general glass.展开更多
氮化镓(GaN)器件的自热问题是目前限制其性能的关键因素,在GaN材料上直接生长多晶金刚石改善器件的自热问题成为研究的热点,多晶金刚石距离GaN器件工作有源区近,散热效率高,但多晶金刚石和GaN材料热失配可能会导致GaN电特性衰退.本文采...氮化镓(GaN)器件的自热问题是目前限制其性能的关键因素,在GaN材料上直接生长多晶金刚石改善器件的自热问题成为研究的热点,多晶金刚石距离GaN器件工作有源区近,散热效率高,但多晶金刚石和GaN材料热失配可能会导致GaN电特性衰退.本文采用微波等离子体化学气相沉积法,在2 in (1 in=2.54 cm)Si基GaN材料上生长多晶金刚石.测试结果显示,多晶金刚石整体均匀一致,生长金刚石厚度为9—81 μm,随着多晶金刚石厚度的增大, GaN (002)衍射峰半高宽增量和电性能衰退逐渐增大.通过激光切割和酸法腐蚀,将Si基GaN材料从多晶金刚石上完整地剥离下来.测试结果表明:金刚石高温生长过程中,氢原子对氮化硅外延层缺陷位置有刻蚀作用形成孔洞区域,刻蚀深度可达本征GaN层;在降温过程,孔洞周围形成裂纹区域.剥离下来的Si基GaN材料拉曼特征峰峰位, XRD的(002)衍射峰半高宽以及电性能均恢复到本征状态,说明多晶金刚石与Si基GaN热失配产生应力,引起GaN晶格畸变,导致GaN材料电特性衰退,这种变化具有可恢复性,而非破坏性.展开更多
基金supported by the National Key Research and Development Program(No.2019YFE03100200)the State Key Lab for Advanced Metals and Materials,the Fund of National Key Laboratory of Solid-State Microwave Devices and Circuits,the National Natural Science Foundation of China(No.52102034)the Or-ganized Research Fund of North China University of Tech-nology(No.2023YZZKY12).The authors are very grateful for the financial support of these institutions.
文摘This study focused on the investigation of the edge effect of diamond films deposited by microwave plasma chemical vapor de-position.Substrate bulge height△h is a factor that affects the edge effect,and it was used to simulate plasma and guide the diamond-film deposition experiments.Finite-element software COMSOL Multiphysics was used to construct a multiphysics(electromagnetic,plasma,and fluid heat transfer fields)coupling model based on electron collision reaction.Raman spectroscopy and scanning electron microscopy were performed to characterize the experimental growth and validate the model.The simulation results reflected the experimental trends observed.Plasma discharge at the edge of the substrate accelerated due to the increase in△h(△h=0-3 mm),and the values of electron density(n_(c)),molar concentration of H(C_(H)),and molar concentration of CH_(3)(C_(CH_(3)))doubled at the edge(for the special concave sample with△h=−1 mm,the active chemical groups exhibited a decreased molar concentration at the edge of the substrate).At=0-3 mm,a high diamond growth rate and a large diamond grain size were observed at the edge of the substrate,and their values increased with.The uniformity of film thickness decreased with.The Raman spectra of all samples revealed the first-order characteristic peak of dia-mond near 1332 cm^(−1).When△h=−1 mm,tensile stress occurred in all regions of the film.When△h=1-3 mm,all areas in the film ex-hibited compressive stress.
基金funded by a grant from the National Core Research Center(NCRC)Program through the National Research Foundation of Korea funded by the Ministry of Education,Science and Technology(No.2012-0000-957)by a grant from the Fundamental R&D Program for Core Technology of Materials funded by the Ministry of Knowledge Economy,Republic of Korea
文摘Ternary Ti-B-N coatings were synthesized on AISI 304 and Si wafer by plasma-enhanced chemical vapor deposition (PECVD) technique using a gaseous mixture of TiCl4,BCl3,H2,N2,and Ar.By virtue of X-ray diffraction analysis,X-ray photoelectron spectroscopy,scanning electron microscope,and high-resolution transmission electron microscope,the influences of B content on the microstructure and properties of Ti B N coatings were investigated systematically.The results indicated that the microstructure and mechanical properties of Ti-B-N coatings largely depend on the transformation from FCC-TiN phase to HCP-TiB2 phase.With increasing B content and decreasing N content in the coatings,the coating microstructure evolves gradually from FCC-TiN/a-BN to HCP-TiB2 /a-BN via FCC-TiN+HCP-TiB2/a-BN.The highest microhardness of about 34 GPa is achieved,which corresponds to the nanocomposite Ti-63%B-N (mole fraction) coating consisting of the HCP-TiB2 nano-crystallites and amorphous BN phase.The lowest friction-coefficient was observed for the nanocomposite Ti-41%B-N (mole fraction) coating consisting of the FCC-TiN nanocrystallites and amorphous BN
基金The project supported by the ChenGuang project of the Wuhan government (No. 20025001014)
文摘Diamond films with very smooth surface and good optical quality have been deposited onto silicon substrate using microwave plasma chemical vapor deposition (MPCVD) from a gas mixture of ethanol and hydrogen at a low substrate temperature of 450 ℃. The effects of the substrate temperature on the diamond nucleation and the morphology of the diamond film have been investigated and observed with scanning electron microscopy (SEM). The microstructure and the phase of the film have been characterized using Raman spectroscopy and X-ray diffraction (XRD). The diamond nucleation density significantly decreases with the increasing of the substrate temperature. There are only sparse nuclei when the substrate temperature is higher than 800 ℃ although the ethanol concentration in hydrogen is very high. That the characteristic diamond peak in the Raman spectrum of a diamond film prepared at a low substrate temperature of 450 ℃ extends into broadband indicates that the film is of nanophase. No graphite peak appeared in the XRD pattern confirms that the film is mainly composed of SP3 carbon. The diamond peak in the XRD pattern also broadens due to the nanocrystalline of the film.
文摘Due to its unique properties such as high hardness, light transmittance, thermal conductance, chemical stability and corrosion resistance, diamond has drawn tremendous attention in last two decades. These specific properties made diamond film a promising material for cutting tools, microwave windows, heat sinks for electronic devices and diamond electrodes. However, the diamond film with grain sizes at microscale usually exhibits high surface roughness and hinders its applications in the microelectro mechanical system (MEMS) and biological field because it is difficult to be polished by mechanical and chemical methods. With the development of the chemical vapor deposition, the nanocrystalline diamond (NCD) film has been fabricated and found new applications. The grain size of NCD film is in the range of 10 to 100 nm, which inherits the properties of the diamond and possesses the unique properties of the nanoscale materials, and the morphology of the NCD film is granular or needle-like structure. The microwave plasma chemical vapor deposition (MPCVD) has been regarded as the most promising method to deposit NCD film at low temperature. Compared to the hot filament CVD, MPCVD can grow high quality NCD film avoiding of the contamination from the filament materials. The MPCVD technique has high plasma density to activate carbonaceous compound and grow NCD film in high growth rate and low substrate temperature. The unique properties of NCD film, such as the superior electrical, mechanical and biological properties facilitate their application in various fields. The biological application, especially as a biocompatible coating, mainly includes the joint replacement implants and protective coatings and the ophthalmological prosthesis.
文摘Aligned carbon nanotubes (CNTs) were synthesized on glass by microwave plasma chemical vapor deposition (MWPCVD) with a mixture of methane and hydrogen gases at the low temperature of 550 ℃. The experimental results show that both the self-bias potential and the density of the catalyst particles are responsible for the alignment of CNTs. When the catalyst particle density is high enough, strong interactions among the CNTs can inhibit CNTs from growing randomly and result in parallel alignment.
基金supported by the Research Pund of Hubei Provincial Department of Education of China (No.Q20081505)
文摘Nano-crystalline diamond (NCD) films were prepared on poly-crystalline diamond (PCD) thick flims by the microwave plasma enhanced chemical vapor deposition (MPCVD) method. Free standing PCD thick film (50 mm in diameter) with a thickness of 413 μm was deposited in CHn/H2 plasma. It was then abraded for 2 hours and finally cut into pieces in a size of 10×10 mm^2 by pulse laser. NCD fihns were deposited on the thick film substrates by introducing a micro-crystalline diamond (MCD) interlayer. Results showed that a higher carbon concentration (5%) and a lower substrate temperature (650℃) were feasible to obtain a highly smooth interlayer, and the appropriate addition of oxygen (2%) into the gas mixture was conducive to obtaining a smooth nano-crystalline diamond film with a tiny grain size.
文摘Using a low power microwave generator(W_(max)=100W) and a Surfatron discharge device, Plasma-polymerized copper phthalocyanine (PPCuPc) film was synthesised from monomer copper phthalocyanine(CuPc) by microwave plasma chemical vaporization deposition(MPCVD) with Ar as incorporation gas. The film was characterized by FTIR and ESCA. The role of dissociation of chemical bond in the polymerization process and the influence of substrate temperature and material on deposition were investigated in some detail.
基金Foundation items: National Natural Science Foundations of China (No.10835004,No.10775031)Science and Technology Commission of Shanghai Municipality,China (No. 10XD1400100)
文摘The hydrophobic films of TixOy-CmHn. deposited from mixture gases of titanium isopropoxide (TTIP) and oxygen by plasma enhanced chemical vapor deposition (PECVD) were investigated. The films were investigated by scanning electron microscope ( SEM ), transmission electron microscope ( TEM ), Fourier transform infrared spectrometer ( FTIR), X-Ray diffraction ( XRD ), element analysis ( EA ), ultraviolet visible spectrometer ( UV-Vis), and water contact angle (WCA). The results reveal that the surface of the films is formed by mierosized papillaes aggregated by inorganic and organic phases of complex nanoparticles with size from 50 nm to 200 nm when the discharge power is increased from 40 W to 150 W. All fdms demonstrate the strong broad of Ti-O-Ti stretching vibration at 400 -800cm-1, -CH bending vibration at 1 388 cm -1, and broadening -OH stretching vibration at 3 000-3500 cm-1 With the increase of the discharge power, the asdeposited film changes from amorphous to crystallization. The WCA of the film can be as high as 160°, indicating the hydrophobicity. The films show a similar ultraviolet absorption property as the bulk TiO2 film. The composition of the composition of film deposited at 150 W can be formulated as Tio.302-C1.5H3. Therefore, the composition formula of this hydrophobic film could be expressed as TiO2-C5H10O4.7. It is believed that the complex micro/nano structures of TiO2 and C5H10O4.7 residues are responsible for the observed hydrophobicity and the ultraviolet absorption property of the film.
基金the National Natural Science Foundation of China(grant No.62174013,92265111)Central Government Guides Local Funds for Science and Technology Development(No.YDZJSX2022A021)the funding Program of BIT(grant No.3180012212214 and 3180023012204).
文摘Two-dimensional(2D)transition metal chalcogenides(TMCs)hold great promise as novel microwave absorption materials owing to their interlayer interactions and unique magnetoelectric properties.However,overcoming the impedance mismatch at the low loading is still a challenge for TMCs due to the restricted loss pathways caused by their high-density characteristic.Here,an interface engineering based on the heterostructure of 2D Cr_(5)Te_(8) and graphite is in situ constructed via a one-step chemical vapor deposit to modulate impedance matching and introduce multiple attenuation mechanisms.Intriguingly,the Cr_(5)Te_(8)@EG(ECT)heterostructure exhibits a minimum reflection loss of up to−57.6 dB at 15.4 GHz with a thin thickness of only 1.4 mm under a low filling rate of 10%.The density functional theory calculations confirm that the splendid performance of ECT heterostructure primarily derives from charge redistribution at the abundant intimate interfaces,thereby reinforcing interfacial polarization loss.Furthermore,the ECT coating displays a remarkable radar cross section reduction of 31.9 dB m^(2),demonstrating a great radar microwave scattering ability.This work sheds light on the interfacial coupled stimulus response mechanism of TMC-based heterogeneous structures and provides a feasible strategy to manipulate high-quality TMCs for excellent microwave absorbers.
基金Acknowledgements This work was financially supported by the National Basic Research Program of China (Nos. 2013CB932603, 2012CB933404, 2011CB921903, and 2013CB934600), the National Natural Science Foundation of China (Nos. 51432002, 51290272, 51121091, 51~201, and 11222434), the Ministry of Education (No. 20120001130010) and the Beijing Municipal Sdence and Technology Planning Project (No. Z151100003315013).
文摘Catalyst-free and scalable synthesis of graphene on various glass substrates at low temperatures is of paramount significance to numerous applications such as low-cost transparent electronics and state-of-the-art displays. However, systematic study within this promising research field has remained scarce thus far. Herein, we report the direct growth of graphene on various glasses using a low-temperature plasma-enhanced chemical vapor deposition method. Such a facile and scalable approach guarantees the growth of uniform, transfer-free graphene films on various glass substrates at a growth temperature range of 400-600 ℃. The morphological, surface wetting, optical, and electrical properties of the obtained graphene can be tailored by controlling the growth parameters. Our uniform and high-quality graphene films directly integrated with low-cost, commonly used glasses show great potential in the fabrication of multi-functional electrodes for versatile applications in solar cells, transparent electronics, and smart windows.
基金supported by the Project of Innovative Team of Advanced Optical Manufacturing and Detection(No.2017KCT-08-02)。
文摘The plasma-enhanced chemical vapor deposition(PECVD)technique is well suited for fabricating optical filters with continuously variable refractive index profiles;however,it is not clear how the optical and structural properties of thin films differ when deposited on different substrates.Herein,silicon nitride films were deposited on silicon,fused silica,and glass substrates by PECVD,using silane and ammonia,to investigate the effects of the substrate used on the optical properties and structures of the films.All of the deposited films were amorphous.Further,the types and amounts of Si-centered tetrahedral Si–SivN4-v bonds formed were based upon the substrates used;Si–N4 bonds with higher elemental nitrogen content were formed on Si substrates,which lead to obtaining higher refractive indices,and the Si–SiN3 bonds were mainly formed on glass and fused silica substrates.The refractive indices of the films formed on the different substrates had a maximum difference of0.05(at 550 nm),the refractive index of SiNx films formed on silicon substrates was 1.83,and the refractive indices of films formed on glass were very close to those formed on fused silica.The deposition rates of these SiNx films are similar,and the extinction coefficients of all the films were lower than 10-4.
基金supported by the National Natural Science Foundation of China (50672059)
文摘One of the most important factors that limits the use of LiFePO 4 as cathode material for lithium ion batteries is its low electronic conductivity.In order to solve this problem,LiFePO 4 in situ vapor-grown carbon fiber (VGCF) composite cathode material has been prepared in a single step through microwave pyrolysis chemical vapor deposition.The phase,microstructure,and electrochemical performance of the composites were investigated.Compared with the cathodes without in situ VGCF,the initial discharge capacity of the composite electrode increases from 109 to 144 mA h g-1 at a 0.5-C rate,and the total electric resistance decreases from 538 to 66.The possible reasons for these effects are proposed.
基金supported by National Natural Science Foundation of China(No.11175137)the Research Fund of Hubei Provincial Department of Education of China(No.Q20081505)the Research Fund of Wuhan Institute of Technology of China(No.11111051)
文摘Boron-doped nano-crystalline diamond (NCD) thin films have been successfully deposited on well-polished poly-crystalline diamond (PCD) thick films in a microwave plasma enhanced chemical vapor deposition (MPCVD) reactor for the first time. Different surface pretreatment techniques are carried out under different gas conditions (CH4, H2, Ar, and CH4/H2) to eliminate the effect of grain boundaries on the growth of a smooth NCD intrinsic layer. Well doped NCD films have been fabricated in CH4/H2/B2H6 plasma by varying the atomic ratio of B/C and the substrate temperature. Atomic force microscopy (AFM) results show that pretreatment in pure CH4 plasma at 1000℃ is most effective for NCD growth, while hydrogen containing plasma is harmful to the surface smoothness of NCD thin fihns. Doping research indicates that the optimum parameters for the boron-doping of high-quality NCD thin films are B/C=300 ppm (10-6) and 800℃.
基金Supported by the Project of the Development and Reform Commission in Jilin Province,China(No.2009-633)the New Century Excellent Talents in Universities of China(No.NCET-06-0303)the National Natural Science Foundation of China(No.20873051)
文摘On the sand-blasting-treated titanium(Ti) substrate, the boron-doped diamond(BDD) electrodes with a wide potential window were prepared by microwave plasma chemical vapor deposition(MPCVD). The electrochemi- cal oxidation ratios of phenol at BDD/Ti electrodes at elevated temperatures(from 20 ℃ to 80 ℃) were examined by the chemical oxygen demand(COD) of phenol electrolyte during electrolysis. The results show that the COD removal was increased at high temperatures and the optimized temperature for enhancing the electrochemical oxidation ratio of phenol is 60 ℃. The mechanism for the temperature-dependent electrochemical oxidation ratios of phenol at the electrodes was investigated. The study would be favorable for further improving the performance of BDD/Ti elec- trodes, especially working at high temperatures.
文摘目的研究硅(Si)、氧(O)元素掺杂对类金刚石(Diamond like Carbon,DLC)薄膜沉积、结构、表面形貌以及阻隔性能的影响,为高效制备高阻隔硅氧共掺类金刚石(Si and O Incorporated DLC,Si/O-DLC)薄膜提供新的思路参考。方法利用微波等离子体化学气相沉积(Plasma Enhanced Chemical Vapor Deposition,PECVD)技术在聚对苯二甲酸乙二醇酯(Polyethylene terephthalate,PET)基底表面沉积Si/O-DLC薄膜,具体研究反应单体中六甲基二硅氧烷(Hexaethyldisiloxane,HMDSO)含量对薄膜沉积和阻隔性能的影响。通过台阶仪、傅里叶红外光谱(FTIR)、X射线光电子能谱(XPS)、原子力显微镜(AFM)表征薄膜厚度、结构和微观形貌,并通过测试氧气透过率表征复合薄膜的阻隔性能。结果随着混合气体中HMDSO含量增加,薄膜的沉积速率提高,不同高度位置上沉积速率波动变弱,平均沉积速率最高达到310 nm·min^(–1),同时,薄膜中Si、O元素含量增加,相关的键合结构含量增加,薄膜表面致密性变差,氧气阻隔性能变弱;当HMDSO流量控制在1 mL·min^(–1)时,PET薄膜的氧气透过率可从未涂覆时的132mL·m^(2)·d^(–1)降低至2mL·m^(2)·d^(-1),阻隔性能明显改善。结论在一定工艺条件下,通过微波PECVD技术在PET薄膜表面涂覆Si/O-DLC薄膜,可明显改善其阻隔性能。
基金Project supported by the Innovation Funding of Beijing Institute of Aeronautical Materials。
文摘Titanium nitride films are prepared by plasma enhanced chemical vapor deposition method on titanium foil using N_(2) as precursor. In order to evaluate the effect of oxygen on the growth of titanium nitride films, a small amount of O_(2) is introduced into the preparation process. The study indicates that trace O_(2) addition into the reaction chamber gives rise to significant changes on the color and micro-morphology of the foil, featuring dense and long nano-wires. The as-synthesized nanostructures are characterized by various methods and identified as TiN, Ti_(2) N, and TiO_(2) respectively. Moreover, the experiment results show that oxide nanowire has a high degree of crystallinity and the nitrides present specific orientation relationships with the titanium matrix.
基金This work was supported by the National Key Basic Research and Development Programme of China (No. G2000028202 and G2000028203) Guangdong Provincial Natural Science Foundation of China (No. 05300378) Programme on Natural Science of Jinan University (No. 51204056).
文摘Raman spectra and scanning electron microscope (SEM) techniques were used to determine the structural properties of microcrb'stalline silicon (μc-Si:H) films deposited on different substrates with the very high frequency plasma-enhanced chemical vapor deposition (VHF-PECVD) technique. Using the Raman spectra, the values of crystalline volume fraction Xc and average grain size d are 86%, 12.3nm; 65%, 5.45nm; and 38%, 4.05nm, for single crystalline silicon wafer, coming 7059 glass, and general optical glass substrates, respectively. The SEM images further demonstrate the substrate effect on the film surface roughness. For the single crystalline silicon wafer and Coming 7059 glass, the surfaces of the μc-Si:H films are fairly smooth because of the homogenous growth or h'ttle lattice mismatch. But for general optical glass, the surface of the μ-Si: H film is very rough, thus the growing surface roughness affects the crystallization process and determines the average grain size of the deposited material. Moreover, with the measurements of thickness, photo and dark conductivity, photosensitivity and activation energy, the substrate effect on the deposition rate, optical and electrical properties of the μc-Si:H thin films have also been investigated. On the basis of the above results, it can be concluded that the substrates affect the initial growing layers acting as a seed for the formation of a crystalline-like material and then the deposition rates, optical and electrical properties are also strongly influenced, hence, deposition parameter optimization is the key method that can be used to obtain a good initial growing layer, to realize the deposition of μc-Si:H films with device-grade quality on cheap substrates such as general glass.
文摘氮化镓(GaN)器件的自热问题是目前限制其性能的关键因素,在GaN材料上直接生长多晶金刚石改善器件的自热问题成为研究的热点,多晶金刚石距离GaN器件工作有源区近,散热效率高,但多晶金刚石和GaN材料热失配可能会导致GaN电特性衰退.本文采用微波等离子体化学气相沉积法,在2 in (1 in=2.54 cm)Si基GaN材料上生长多晶金刚石.测试结果显示,多晶金刚石整体均匀一致,生长金刚石厚度为9—81 μm,随着多晶金刚石厚度的增大, GaN (002)衍射峰半高宽增量和电性能衰退逐渐增大.通过激光切割和酸法腐蚀,将Si基GaN材料从多晶金刚石上完整地剥离下来.测试结果表明:金刚石高温生长过程中,氢原子对氮化硅外延层缺陷位置有刻蚀作用形成孔洞区域,刻蚀深度可达本征GaN层;在降温过程,孔洞周围形成裂纹区域.剥离下来的Si基GaN材料拉曼特征峰峰位, XRD的(002)衍射峰半高宽以及电性能均恢复到本征状态,说明多晶金刚石与Si基GaN热失配产生应力,引起GaN晶格畸变,导致GaN材料电特性衰退,这种变化具有可恢复性,而非破坏性.