期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Experimental investigation of evaporative cooling mixture of bosonic ^(87)Rb and fermionic ^(40)K atoms with microwave and radio frequency radiation
1
作者 王鹏军 熊德智 +1 位作者 付正坤 张靖 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第1期515-520,共6页
We investigate sympathetic cooling fermions 40K by evaporatively cooling bosonic 87Rb atoms in a magnetic trap with microwave and radio frequency induced evaporations in detail. The mixture of bosonic and fermionic at... We investigate sympathetic cooling fermions 40K by evaporatively cooling bosonic 87Rb atoms in a magnetic trap with microwave and radio frequency induced evaporations in detail. The mixture of bosonic and fermionic atoms is prepared in their polarized spin states IF = 9/2, mF = 9/2) for 40K and IF = 2, mF=2〉 for 87Rb, which is trapped in Quadrupole-Ioffe-Configuration trap. Comparing microwave with radio frequency evaporatively cooling bosonic STRb atoms with sympathetically cooling Fermi gas 40K, we find that the presence of rubidium atoms in the [2, 1} Zeeman states, which are generated in the evaporative process, gives rise to a significant loss of 40K due to inelastic collisions. Thus, the rubidium atoms populated in the [2, 1} Zeeman states should be removed in order to effectively perform sympathetically cooling 40K with the evaporatively cooled STRb atoms. 展开更多
关键词 microwave and radio frequency induced evaporation sympathetically cooling inelasticcollisions
下载PDF
PTX-symmetric metasurfaces for sensing applications 被引量:2
2
作者 Zhilu YE Minye YANG +1 位作者 Liang ZHU Pai-Yen CHEN 《Frontiers of Optoelectronics》 EI CSCD 2021年第2期211-220,共10页
In this paper,we introduce an ultra-sensitive optical sensing platform based on the parity-time-reciprocal scaling(PT^-symmetric non-Hermitian metasurfaces,which leverage exotic singularities,such as the exceptional p... In this paper,we introduce an ultra-sensitive optical sensing platform based on the parity-time-reciprocal scaling(PT^-symmetric non-Hermitian metasurfaces,which leverage exotic singularities,such as the exceptional point(EP)and the coherent perfect absorber-laser(CPAL)point,to significantly enhance the sensitivity and detectability of photonic sensors.We theoretically studied scattering properties and physical limitations of the PTX-symmetric metasurface sensing systems with an asymmetric,unbalanced gain-loss profile.The PTLY-symmetric metasurfaces can exhibit similar scattering properties as their Pr-symmetric counterparts at singular points,while achieving a higher sensitivity and a larger modulation depth,possible with the reciprocal-scaling factor(i.e.,X transformation).Specifically,with the optimal reciprocalscaling factor or near-zero phase offset,the proposed PTX-symmetric metasurface sensors operating around the EP or CPAL point may achieve an over 100 dB modulation depth,thus paving a promising route toward the detection of small-scale perturbations caused by,for example,molecular,gaseous,and biochemical surface adsorbates. 展开更多
关键词 parity-time symmetry exceptional point(EP) laser oscillator coherent perfect absorber electromagnetic sensor radio frequency(RF)and microwave sensing optical sensing
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部