An improved analytical method to determine the content of 52 major, minor and trace elements in marine geological samples, using a HF-HCl-HNO_3 acid system with a high-pressure closed digestion method(HPCD), is stud...An improved analytical method to determine the content of 52 major, minor and trace elements in marine geological samples, using a HF-HCl-HNO_3 acid system with a high-pressure closed digestion method(HPCD), is studied by an inductively coupled plasma optical emission spectrometry(ICP-OES) and an inductively coupled plasma mass spectrometry(ICP-MS). The operating parameters of the instruments are optimized, and the optimal analytical parameters are determined. The influences of optical spectrum and mass spectrum interferences, digestion methods and acid systems on the analytical results are investigated. The optimal spectral lines and isotopes are chosen, and internal standard element of rhodium is selected to compensate for matrix effects and analytical signals drifting. Compared with the methods of an electric heating plate digestion and a microwave digestion, a high-pressure closed digestion method is optimized with less acid, complete digestion,less damage for digestion process. The marine geological samples are dissolved completely by a HF-HCl-HNO_3 system, the relative error(RE) for the analytical results are all less than 6.0%. The method detection limits are 2–40μg/g by the ICP-OES, and 6–80 ng/g by ICP-MS. The methods are used to determine the marine sediment reference materials(GBW07309, GBW07311, GBW07313), rock reference materials(GBW07103, GBW07104,GBW07105), and cobalt-rich crust reference materials(GBW07337, GBW07338, GBW07339), the obtained analytical results are in agreement with the certified values, and both of the relative standard deviation(RSD) and the relative error(RE) are less than 6.0%. The analytical method meets the requirements for determining 52 elements contents of bulk marine geological samples.展开更多
A closed-vessel microwave digestion method is described for the rapid dissolution of environmental samples such as foods, soils and sediments. Depending on the sample type, 0.1-0.2 g sample was decomposed with HNO3/H2...A closed-vessel microwave digestion method is described for the rapid dissolution of environmental samples such as foods, soils and sediments. Depending on the sample type, 0.1-0.2 g sample was decomposed with HNO3/H2O2 or HNO3 / H2O2/HF acid mixture in a PTFE digestion vessel by using microwave heating for 2-3 min at 500W of microwave power. The solution, or to which 0.5 g of boric acid was added, was diluted to 25-50 ml and directly determined by sequential ICP-AES. The accuracy of the procedure was validated by the analysis of six standard reference materials for 10 elements. Ail results were in a good agreements with the certified values.展开更多
The material composition of geological samples is very complicated. Generally, the method for accurately determining trace elements in geological samples needs to digest the solid samples into liquid state, which is c...The material composition of geological samples is very complicated. Generally, the method for accurately determining trace elements in geological samples needs to digest the solid samples into liquid state, which is convenient for inductively coupled plasma mass spectrometry. The previous digestion method takes a long time and the operation process is complicated. The Ultra CLAVE microwave digestion instrument was used to digest the geological samples. The types and dosages of the acid used for digestion and the optimal conditions for instrumental testing were published. The results show that this method has short processing time, small data error, safer operation and good digestion effect. This method is suitable for geological sample analysis.展开更多
Using ultra-fine sample for determination 42 elements by pressurized acid digestion -ICP-MS, the mass of test portion can be reduced to 2 mg yet maintain the representation. And acid used for digestion could be reduce...Using ultra-fine sample for determination 42 elements by pressurized acid digestion -ICP-MS, the mass of test portion can be reduced to 2 mg yet maintain the representation. And acid used for digestion could be reduced to less than 0.5 mL, reaction time also largely reduced.展开更多
基金The China Ocean Mineral Resources Research and Development Association Research Program of the State Oceanic Administration of China under contract No.DY125-13-R-07the National Natural Science Foundation of China under contract Nos 41322036 and 41230960+1 种基金the Shandong Provincial Natural Science Foundation of China under contract No.ZR2014DP009the Special Basic Research Funds for Central Public Research Institutes for The First Institute of Oceanography,State Oceanic Administration of China under contract Nos GY0213G06 and GY02-2012G35
文摘An improved analytical method to determine the content of 52 major, minor and trace elements in marine geological samples, using a HF-HCl-HNO_3 acid system with a high-pressure closed digestion method(HPCD), is studied by an inductively coupled plasma optical emission spectrometry(ICP-OES) and an inductively coupled plasma mass spectrometry(ICP-MS). The operating parameters of the instruments are optimized, and the optimal analytical parameters are determined. The influences of optical spectrum and mass spectrum interferences, digestion methods and acid systems on the analytical results are investigated. The optimal spectral lines and isotopes are chosen, and internal standard element of rhodium is selected to compensate for matrix effects and analytical signals drifting. Compared with the methods of an electric heating plate digestion and a microwave digestion, a high-pressure closed digestion method is optimized with less acid, complete digestion,less damage for digestion process. The marine geological samples are dissolved completely by a HF-HCl-HNO_3 system, the relative error(RE) for the analytical results are all less than 6.0%. The method detection limits are 2–40μg/g by the ICP-OES, and 6–80 ng/g by ICP-MS. The methods are used to determine the marine sediment reference materials(GBW07309, GBW07311, GBW07313), rock reference materials(GBW07103, GBW07104,GBW07105), and cobalt-rich crust reference materials(GBW07337, GBW07338, GBW07339), the obtained analytical results are in agreement with the certified values, and both of the relative standard deviation(RSD) and the relative error(RE) are less than 6.0%. The analytical method meets the requirements for determining 52 elements contents of bulk marine geological samples.
文摘A closed-vessel microwave digestion method is described for the rapid dissolution of environmental samples such as foods, soils and sediments. Depending on the sample type, 0.1-0.2 g sample was decomposed with HNO3/H2O2 or HNO3 / H2O2/HF acid mixture in a PTFE digestion vessel by using microwave heating for 2-3 min at 500W of microwave power. The solution, or to which 0.5 g of boric acid was added, was diluted to 25-50 ml and directly determined by sequential ICP-AES. The accuracy of the procedure was validated by the analysis of six standard reference materials for 10 elements. Ail results were in a good agreements with the certified values.
文摘The material composition of geological samples is very complicated. Generally, the method for accurately determining trace elements in geological samples needs to digest the solid samples into liquid state, which is convenient for inductively coupled plasma mass spectrometry. The previous digestion method takes a long time and the operation process is complicated. The Ultra CLAVE microwave digestion instrument was used to digest the geological samples. The types and dosages of the acid used for digestion and the optimal conditions for instrumental testing were published. The results show that this method has short processing time, small data error, safer operation and good digestion effect. This method is suitable for geological sample analysis.
文摘Using ultra-fine sample for determination 42 elements by pressurized acid digestion -ICP-MS, the mass of test portion can be reduced to 2 mg yet maintain the representation. And acid used for digestion could be reduced to less than 0.5 mL, reaction time also largely reduced.