A new type strongly gain coupled (GC) DFB laser and a new type self alignment spot size converter (SA SSC) are proposed and successfully fabricated.The strongly GC DFB laser is monolithically integrated with the ...A new type strongly gain coupled (GC) DFB laser and a new type self alignment spot size converter (SA SSC) are proposed and successfully fabricated.The strongly GC DFB laser is monolithically integrated with the SA SSC with three step epitaxies.A high single mode yield and large side mode suppression ratio is obtained from the strongly GC DFB laser.A near circle far field pattern is obtained by using the SA SSC.展开更多
The well number and the cavity length of 1.55μm wavelength In 1-x-y Ga y Al x As MQW DFB lasers are optimized using a simple model.A low threshold,maximum operating temperature of 550~560K,and high relaxat...The well number and the cavity length of 1.55μm wavelength In 1-x-y Ga y Al x As MQW DFB lasers are optimized using a simple model.A low threshold,maximum operating temperature of 550~560K,and high relaxation oscillation frequency of over 30GHz MQW DFB laser is presented.展开更多
A 1.55μm InGaAsP-InP three-section DFB laser with hybrid grating is fabricated and self-pulsations (SP) with frequencies around 20GHz are observed. The mechanism of SP generation in this device is researched. Furth...A 1.55μm InGaAsP-InP three-section DFB laser with hybrid grating is fabricated and self-pulsations (SP) with frequencies around 20GHz are observed. The mechanism of SP generation in this device is researched. Furthermore,the important role of the phase tuning section on the SP is investigated.展开更多
In this paper,the fabrication of 1.3μm InGaAsP/InP gain-coupled DFB lasers with lossgrating is reported for the first time.A technique of regrowth on corrugated surface usingLPE is developed.By using GaAs as the cove...In this paper,the fabrication of 1.3μm InGaAsP/InP gain-coupled DFB lasers with lossgrating is reported for the first time.A technique of regrowth on corrugated surface usingLPE is developed.By using GaAs as the cover of thermal protection and controlling theamount of the super cooling,high quality epitxial layers on corrugated surface are obtained.The oxide stripe lasers with a stripe width of 20μm are fabricated.Single-mode oscillation isachieved at 1.293μm,and a high single-mode oscillation yield is also obtained.展开更多
We have UV-inscribed fiber Bragg gratings (FBGs), long-period gratings (LPGs) and tilted fiber gratings (TFGs) into mid-IR 2μm range using three common optical fiber grating fabrication techniques (two-beam ho...We have UV-inscribed fiber Bragg gratings (FBGs), long-period gratings (LPGs) and tilted fiber gratings (TFGs) into mid-IR 2μm range using three common optical fiber grating fabrication techniques (two-beam holographic, phase mask and point-by-point). The fabricated FBGs have been evaluated for thermal and strain response. It has been revealed that the FBG devices with responses in mid-IR range are much more sensitive to temperature than that in near-IR range. To explore the unique cladding mode coupling function, we have investigated the thermal and refractive index sensitivities of LPGs and identified that the coupled cladding modes in mid-IR range are also much more sensitive to temperature and surrounding medium refractive index change. The 45° tilted fiber gratings (45°-TFGs) as polarizing devices in mid-IR have been investigated for their polarization extinction characteristics. As efficient reflection filters and in-cavity polarizers, the mid-IR FBGs and 45°-TFGs have been employed in fiber laser cavity to realize multi-wavelength 2μm Tm-doped CW and mode locked fiber lasers, respectively.展开更多
In this work,a hybrid integrated optical transmitter module was designed and fabricated.A proton-exchanged Mach–Zehnder lithium niobate(LiNbO_(3))modulator chip was chosen to enhance the output extinction ratio.A fib...In this work,a hybrid integrated optical transmitter module was designed and fabricated.A proton-exchanged Mach–Zehnder lithium niobate(LiNbO_(3))modulator chip was chosen to enhance the output extinction ratio.A fiber was used to adjust the rotation of the polarization direction caused by the optical isolator.The whole optical path structure,including the laser chip,lens,fiber,and modulator chip,was simulated to achieve high optical output efficiency.After a series of process improvements,a module with an output extinction ratio of 34 dB and a bandwidth of 20.5 GHz(from 2 GHz)was obtained.The optical output efficiency of the whole module reached approximately 21%.The link performance of the module was also measured.展开更多
We demonstrate a mid-IR ZnGeP2 (ZGP) optical parametric oscillator (OPO) pumped by a dual-end-pumped actively aeoasto-optie Q-switched Ho:YAG ceramic laser. The maximum average output power of 35 W is obtained at...We demonstrate a mid-IR ZnGeP2 (ZGP) optical parametric oscillator (OPO) pumped by a dual-end-pumped actively aeoasto-optie Q-switched Ho:YAG ceramic laser. The maximum average output power of 35 W is obtained at a pulse repetition frequency of 20 kHz from the Ho:YAG ceramic laser. Under the maximum incident pump power of Ho:YAG ceramic laser, the maximum output power of 14 W is obtained from the ZGP OPO, corresponding to the slope efficiency of 49.6% with respect to the incident pump power. The wavelength can be tuned from 3.5 μm to 4.2μm (signal), corresponding to 5.24.1 μm (idler). The beam quality M2 is less than 2.3 from the ZGP OPO.展开更多
We experimentally demonstrate an In P-based hybrid integration of a single-mode DFB laser emitting at around 1310 nm and a tunneling diode. The evident negative differential resistance regions are obtained in both ele...We experimentally demonstrate an In P-based hybrid integration of a single-mode DFB laser emitting at around 1310 nm and a tunneling diode. The evident negative differential resistance regions are obtained in both electrical and optical output characteristics. The electrical and optical bistabilities controlled by the voltage through the tunneling diode are also measured. When the voltage changes between 1.46 V and 1.66 V, a 200-mV-wide hysteresis loop and an optical power ON/OFF ratio of 17 dB are obtained. A side-mode suppression ratio of the integrated device in the ON state is up to 43 dB. The tunneling diode can switch on/off the laser within a very small voltage range compared with that directly controlled by a voltage source.展开更多
Modulation bandwidth enhancement in a directly modulated two-section distributed feedback(TS-DFB)laser based on a detuned loading effect is investigated and experimentally demonstrated.The results show that the 3-dB b...Modulation bandwidth enhancement in a directly modulated two-section distributed feedback(TS-DFB)laser based on a detuned loading effect is investigated and experimentally demonstrated.The results show that the 3-dB bandwidth of the TS-DFB laser is increased to 17.6 GHz and that chirp parameter can be reduced to 2.24.Compared to the absence of a detuned loading effect,there is a 4.6 GHz increase and a 2.45 reduction,respectively.After transmitting a 10 Gb/s non-return-to-zero(NRZ)signal through a 5-km fiber,the modulation eye diagram still achieves a large opening.Eight-channel laser arrays with precise wavelength spacing are fabricated.Each TS-DFB laser in the array has side mode suppression ratios(SMSR)>49.093 dB and the maximum wavelength residual<0.316 nm.展开更多
A new all-optical flip-flop based on a nonlinear Distributed feedback (DFB) structure is proposed. The device does not require a holding beam. A nonlinear part of the grating is detuned from the remaining part of the ...A new all-optical flip-flop based on a nonlinear Distributed feedback (DFB) structure is proposed. The device does not require a holding beam. A nonlinear part of the grating is detuned from the remaining part of the grating and has negative nonlinear coefficient. Optical gain is provided by an injected electrical current into an active layer. In the OFF state, due to the detuned section, no laser light is generated in the device. An injected optical pulse reduces the detuning of the nonlinear section, and the optical feedback provided by the DFB structure generates a laser light in the structure that sustains the change in the detuned section. The device is switched “OFF” by detuning another section of the grating by a Reset pulse. The Reset pulse reduces the refractive index of that section by the generation of electron-hole pairs. The Reset pulse wavelength is adjusted such that the optical gain provided by the active layer at that wavelength is zero. The Reset pulse is prevented from reaching the nonlinear detuned section by introducing an optical absorber in the laser cavity to attenuate the pulse. The device is simulated in time domain using General Purpose Graphics Processing Unit (GPGPU) computing. Set-Reset operations are in nanosecond time scale.展开更多
The compressively strained InGaAs/InGaAsP quantum well distributed feedback laser with ridge-wave- guide is fabricated at 1.74μm. It is grown by low-pressure metal organic chemical vapor deposition(MOCVD). A strain...The compressively strained InGaAs/InGaAsP quantum well distributed feedback laser with ridge-wave- guide is fabricated at 1.74μm. It is grown by low-pressure metal organic chemical vapor deposition(MOCVD). A strain buffer layer is used to avoid indium segregation. The threshold current of the device uncoated with length of 300μm is 11.5mA. The maximum output power is 14mW at 100mA. A side mode suppression ratio of 35.5dB is obtained.展开更多
文摘A new type strongly gain coupled (GC) DFB laser and a new type self alignment spot size converter (SA SSC) are proposed and successfully fabricated.The strongly GC DFB laser is monolithically integrated with the SA SSC with three step epitaxies.A high single mode yield and large side mode suppression ratio is obtained from the strongly GC DFB laser.A near circle far field pattern is obtained by using the SA SSC.
文摘The well number and the cavity length of 1.55μm wavelength In 1-x-y Ga y Al x As MQW DFB lasers are optimized using a simple model.A low threshold,maximum operating temperature of 550~560K,and high relaxation oscillation frequency of over 30GHz MQW DFB laser is presented.
文摘A 1.55μm InGaAsP-InP three-section DFB laser with hybrid grating is fabricated and self-pulsations (SP) with frequencies around 20GHz are observed. The mechanism of SP generation in this device is researched. Furthermore,the important role of the phase tuning section on the SP is investigated.
基金Supported by National Natural Science Foundation of Chinathe Trans-Century Training Porgramme Foundation for Talents of the State Education Commission.
文摘In this paper,the fabrication of 1.3μm InGaAsP/InP gain-coupled DFB lasers with lossgrating is reported for the first time.A technique of regrowth on corrugated surface usingLPE is developed.By using GaAs as the cover of thermal protection and controlling theamount of the super cooling,high quality epitxial layers on corrugated surface are obtained.The oxide stripe lasers with a stripe width of 20μm are fabricated.Single-mode oscillation isachieved at 1.293μm,and a high single-mode oscillation yield is also obtained.
文摘We have UV-inscribed fiber Bragg gratings (FBGs), long-period gratings (LPGs) and tilted fiber gratings (TFGs) into mid-IR 2μm range using three common optical fiber grating fabrication techniques (two-beam holographic, phase mask and point-by-point). The fabricated FBGs have been evaluated for thermal and strain response. It has been revealed that the FBG devices with responses in mid-IR range are much more sensitive to temperature than that in near-IR range. To explore the unique cladding mode coupling function, we have investigated the thermal and refractive index sensitivities of LPGs and identified that the coupled cladding modes in mid-IR range are also much more sensitive to temperature and surrounding medium refractive index change. The 45° tilted fiber gratings (45°-TFGs) as polarizing devices in mid-IR have been investigated for their polarization extinction characteristics. As efficient reflection filters and in-cavity polarizers, the mid-IR FBGs and 45°-TFGs have been employed in fiber laser cavity to realize multi-wavelength 2μm Tm-doped CW and mode locked fiber lasers, respectively.
基金This work was supported by National Key Research and Development Program of China(2018YFB2201101)the Strategic Priority Research Program of Chinese Academy of Sciences,Grant No.XDB43000000Beijing Municipal Science&Technology Commission,Administrative Commission of Zhongguancun Science Park No.Z201100004020004。
文摘In this work,a hybrid integrated optical transmitter module was designed and fabricated.A proton-exchanged Mach–Zehnder lithium niobate(LiNbO_(3))modulator chip was chosen to enhance the output extinction ratio.A fiber was used to adjust the rotation of the polarization direction caused by the optical isolator.The whole optical path structure,including the laser chip,lens,fiber,and modulator chip,was simulated to achieve high optical output efficiency.After a series of process improvements,a module with an output extinction ratio of 34 dB and a bandwidth of 20.5 GHz(from 2 GHz)was obtained.The optical output efficiency of the whole module reached approximately 21%.The link performance of the module was also measured.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61308009,61405047 and 50990301the Fundamental Research Funds for the Central Universities under Grant Nos HIT.NSRIF.2014044 and HIT.NSRIF.2015042the Science Fund for Outstanding Youths of Heilongjiang Province under Grant No JQ201310
文摘We demonstrate a mid-IR ZnGeP2 (ZGP) optical parametric oscillator (OPO) pumped by a dual-end-pumped actively aeoasto-optie Q-switched Ho:YAG ceramic laser. The maximum average output power of 35 W is obtained at a pulse repetition frequency of 20 kHz from the Ho:YAG ceramic laser. Under the maximum incident pump power of Ho:YAG ceramic laser, the maximum output power of 14 W is obtained from the ZGP OPO, corresponding to the slope efficiency of 49.6% with respect to the incident pump power. The wavelength can be tuned from 3.5 μm to 4.2μm (signal), corresponding to 5.24.1 μm (idler). The beam quality M2 is less than 2.3 from the ZGP OPO.
基金Supported by the National Key Research and Development Program of China under Grant No 2017YFB0405301the National Natural Science Foundation of China under Grant Nos 61604144 and 61504137
文摘We experimentally demonstrate an In P-based hybrid integration of a single-mode DFB laser emitting at around 1310 nm and a tunneling diode. The evident negative differential resistance regions are obtained in both electrical and optical output characteristics. The electrical and optical bistabilities controlled by the voltage through the tunneling diode are also measured. When the voltage changes between 1.46 V and 1.66 V, a 200-mV-wide hysteresis loop and an optical power ON/OFF ratio of 17 dB are obtained. A side-mode suppression ratio of the integrated device in the ON state is up to 43 dB. The tunneling diode can switch on/off the laser within a very small voltage range compared with that directly controlled by a voltage source.
文摘Modulation bandwidth enhancement in a directly modulated two-section distributed feedback(TS-DFB)laser based on a detuned loading effect is investigated and experimentally demonstrated.The results show that the 3-dB bandwidth of the TS-DFB laser is increased to 17.6 GHz and that chirp parameter can be reduced to 2.24.Compared to the absence of a detuned loading effect,there is a 4.6 GHz increase and a 2.45 reduction,respectively.After transmitting a 10 Gb/s non-return-to-zero(NRZ)signal through a 5-km fiber,the modulation eye diagram still achieves a large opening.Eight-channel laser arrays with precise wavelength spacing are fabricated.Each TS-DFB laser in the array has side mode suppression ratios(SMSR)>49.093 dB and the maximum wavelength residual<0.316 nm.
文摘A new all-optical flip-flop based on a nonlinear Distributed feedback (DFB) structure is proposed. The device does not require a holding beam. A nonlinear part of the grating is detuned from the remaining part of the grating and has negative nonlinear coefficient. Optical gain is provided by an injected electrical current into an active layer. In the OFF state, due to the detuned section, no laser light is generated in the device. An injected optical pulse reduces the detuning of the nonlinear section, and the optical feedback provided by the DFB structure generates a laser light in the structure that sustains the change in the detuned section. The device is switched “OFF” by detuning another section of the grating by a Reset pulse. The Reset pulse reduces the refractive index of that section by the generation of electron-hole pairs. The Reset pulse wavelength is adjusted such that the optical gain provided by the active layer at that wavelength is zero. The Reset pulse is prevented from reaching the nonlinear detuned section by introducing an optical absorber in the laser cavity to attenuate the pulse. The device is simulated in time domain using General Purpose Graphics Processing Unit (GPGPU) computing. Set-Reset operations are in nanosecond time scale.
文摘The compressively strained InGaAs/InGaAsP quantum well distributed feedback laser with ridge-wave- guide is fabricated at 1.74μm. It is grown by low-pressure metal organic chemical vapor deposition(MOCVD). A strain buffer layer is used to avoid indium segregation. The threshold current of the device uncoated with length of 300μm is 11.5mA. The maximum output power is 14mW at 100mA. A side mode suppression ratio of 35.5dB is obtained.