The molybdenum(Mo)isotope system is pivotal in reconstructing marine redox changes throughout Earth’s history and has emerged as a promising tracer for igneous and metamorphic processes.Understanding its composition ...The molybdenum(Mo)isotope system is pivotal in reconstructing marine redox changes throughout Earth’s history and has emerged as a promising tracer for igneous and metamorphic processes.Understanding its composition and variation across major geochemical reservoirs is essential for its application in investigating high-temperature processes.However,there is debate regarding theδ^(98/95)Mo value of the Earth’s mantle,with estimates ranging from sub-chondritic to super-chondritic values.Recent analyses of global mid-ocean ridge basalt(MORB)glasses revealed significantδ^(98/95)Mo variations attributed to mantle heterogeneity,proposing a two-component mixing model to explain the observed variation.Complementary studies confirmed the sub-chondriticδ^(98/95)Mo of the depleted upper mantle,suggesting remixing of subduction-modified oceanic crust as a plausible mechanism.These findings underscore the role of Mo isotopes as effective tracers for understanding dynamic processes associated with mantle-crustal recycling.展开更多
A number of high-temperature processes(e.g.,melt-rock reactions,metasomatism,partial melting)can produce signifi cant Ca isotopic fractionation and heterogeneity in the mantle,but the mechanism for such fractionation ...A number of high-temperature processes(e.g.,melt-rock reactions,metasomatism,partial melting)can produce signifi cant Ca isotopic fractionation and heterogeneity in the mantle,but the mechanism for such fractionation remains obscure.To investigate the eff ect of mantle partial melting on Ca isotopic fractionation,we reported high-precision Ca isotopic compositions of depleted mid-ocean ridge basalts(MORBs)from the East Pacifi c Rise and Ecuador Rift in the northeastern Pacifi c.Theδ44/40 Ca of these MORB samples exhibit a narrow variation from 0.84‰to 0.88‰with an average of 0.85‰±0.03‰,which are similar to those of reported MORBs(0.83‰±0.11‰)and back-arc basin basalts(BABBs,0.80‰±0.08‰)in literature,but are lower than the estimate value for the bulk silicate Earth(BSE,0.94‰±0.05‰).The lowδ44/40 Ca signatures of MORB samples in this study cannot be caused by fractional crystallization,since intermediate-mafi c diff erentiation has been demonstrated having only limited eff ects on Ca isotopic fractionation.Instead,the off set ofδ44/40 Ca between MORBs and the BSE is most likely produced by mantle partial melting.During this process,the light Ca isotopes are preferentially transferred to the melt,while the heavy ones tend to stay in the residue,which is consistent with the fact thatδ44/40 Ca of melt-depleted peridotites increases with partial melting in literature.The behavior of Ca isotopes during mantle partial melting is closely related to the inter-mineral(Cpx and Opx)Ca isotopic fractionation and melting mineral modes.Mantle partial melting is one of the common processes that can induce lowerδ44/40 Ca values in basalts and Ca isotopic heterogeneity in Earth’s mantle.展开更多
Multichannel seismic studies performed at fastspreading mid-ocean ridges revealed the presence of a thin(tens to hundreds of meters high), narrow(< 1-2 km wide) axial melt lens(AML) in the mid-crust, which is under...Multichannel seismic studies performed at fastspreading mid-ocean ridges revealed the presence of a thin(tens to hundreds of meters high), narrow(< 1-2 km wide) axial melt lens(AML) in the mid-crust, which is underlain by crystal/melt mush that is in turn laterally surrounded by a transition zone of mostly solidified material. In order to shed light on the complexity of magmatic and metamorphic processes ongoing within and at the roof of axial melt lenses, we have focused on the petrological and geochemical record provided by fossilized AMLs. Of particular significance is Hole 1256D in the equatorial Pacific drilled by the International Ocean Discovery Program(IODP), where for the first time, the transition between sheeted dikes and gabbros in intact fast-spreading crust was penetrated, providing a drill core with a more or less continuous record of the upper part of an AML(Teagle et al., 2006;Koepke et al., 2008). This can be regarded as rosetta stone to answer longstanding questions on the complex magmatic evolution within an AML, as well as on metamorphic and anatectic processes ongoing at the roof of a dynamic AML, rising upward in the midcrust as a consequence of a replenishment event. The plutonic rocks drilled from Hole 1256D consist of quartz-bearing gabbros, diorites and tonalites, which might represent the upper part of a fossilized AML. The gabbros and diorites are consistent with modeled products of MORB fractional crystallization, composed of mixed melt and cumulate in varying ratios. Modeled trace elements support a model in which the tonalites originated from low-degree partial melting of the sheeted dikes overlying the AML, rather than extreme fractional crystallization(Erdmann et al., 2015;Zhang et al., 2017a). Therefore, the upper part of AML, largely composed of low density and high-viscosity felsic magmas, may serve as a barrier to eruptible MORB melts in the lower part of AML. Zoning of apatites from three different lithologies, tonalites, diorites, and gabbros, is common and shows a consistent evolution trend with depletion in Cl and REEs from core to rim. The cores are usually homogenous in composition and interpreted as magmatic origin, whereas zones with lower Cl and REEs are disseminated with heterogeneous concentrations, indicating exchanges with hydrothermal fluids. The high-Cl apatite core indicates assimilation of high-Cl brines at a magmatic stage, which is interpreted as immiscibility product from cycling seawater-derived fluids at a high temperature(Zhang et al., 2017b). The variation of F/Cl and Br/Cl ratios of bull rocks may reflect the mixing between MORB magmas and seawater-derived fluids, crystallization of apatite and amphibole, and/or extraction of magmatic fluids(Zhang et al., 2017c).展开更多
The high-pressure metamorphosed Gridino dyke swarm comprises a major group of Mesoarchean 2.87-2.82 Ga mafic dykes intruded within the Mesoarchean continental crust of the Kola craton(the Belomorian tectonic province
Mid-ocean ridge basalts(MORBs) are characterized by large variations in trace element compositions and isotopic ratios, which are difficult to be interpreted solely by using magmatic process such as partial melting of...Mid-ocean ridge basalts(MORBs) are characterized by large variations in trace element compositions and isotopic ratios, which are difficult to be interpreted solely by using magmatic process such as partial melting of a peridotitic mantle and subsequently fractional crystallization. Geochemical diversity of MORBs have been attributed to large-scale heterogeneity within the underlying mantle, and the heterogeneity might have been caused by addition of recycled crustal component, subcontinental lithosphere, metasomatized lithosphere and outer core contribution. In this study, we investigated the MORBs along the Mid-Atlantic Ridge(MAR) by estimating the temperature and pressure of partial melting, and comprehensively comparing trace element and isotope ratios. The data for MORBs from areas close to mantle plumes show large variations. Mantle plumes can affect mid-oceanic ridges 1 400 km away, but plume effects did not cover all of the ridge segments, and those segments without plume effects did not have any abnormalities in temperature, trace element or isotope ratios.We ascribed the above phenomena to result from the shapes of the plume flow, which we categorized as "pipelike channels" and "pancake-like channels". The "pancake-like channels" plumes affected the ambient mantle nondirectionally, but the range of the mantle affected by the "pipe-like channels" plumes were selective. Element ratios of MORBs reveal that the mantle source of the MORBs along the MAR is highly heterogeneous. We suggest that most of source heterogeneities of the MORBs may be due to the presence of subducted slab and delaminated lower crust in the source. In addition, the plume that carried materials from the core-mantle boundary may affect some of the segments.展开更多
Fracture-fissure systems found at mid-ocean ridges are dominating conduits for the circulation of metallogenic fluid.Ascertaining the distribution area of active faults on both sides of mid-ocean ridges will provide a...Fracture-fissure systems found at mid-ocean ridges are dominating conduits for the circulation of metallogenic fluid.Ascertaining the distribution area of active faults on both sides of mid-ocean ridges will provide a useful tool in the search for potential hydrothermal vents,thus guiding the exploration of modern seafloor sulfides.Considering the MidAtlantic Ridge 20°N–24°N(NMAR)and North Chile Rise(NCR)as examples,fault elements such as Fault Spacing(?S)and Fault Heave(?X)can be identified and quantitatively measured.The methods used include Fourier filtering of the multi-beam bathymetry data,in combination with measurements of the topographic slope,curvature,and slope aspect patterns.According to the Sequential Faulting Model of mid-ocean ridges,the maximal migration distance of an active fault on either side of mid-ocean ridges—that is,the distribution range of active faults—can be measured.Results show that the maximal migration distance of active faults at the NMAR is 0.76–1.01 km(the distance is larger at the center than at the ends of this segment),and at the NCR,the distribution range of active faults is 0.38–1.6 km.The migration distance of active faults on the two study areas is positively related to the axial variation of magma supply.In the NCR study area,where there is an abundant magma input,the number of faults within a certain distance is mainly affected by the variation of lithospheric thickness.Here a large range of faulting clearly corresponds to a high proportion of magmatism to seafloor spreading near mid-ocean ridges(M)value,and in the study area of the NMAR,there is insufficient magmatism,and the number of faults may be controlled by both lithospheric thickness and magma supply,leading to a less obvious positive correlation between the distribution range of active faults and M.展开更多
Mid-ocean ridge and oceanic transforms are among the most prominent features on the seafloor surface and are crucial for understanding seafloor spreading and plate tectonic dynamics,but the deep structure of the ocean...Mid-ocean ridge and oceanic transforms are among the most prominent features on the seafloor surface and are crucial for understanding seafloor spreading and plate tectonic dynamics,but the deep structure of the oceanic lithosphere remains poorly understood.The large number of microearthquakes occurring along ridges and transforms provide valuable information for gaining an indepth view of the underlying detailed seismic structures,contributing to understanding geodynamic processes within the oceanic lithosphere.Previous studies have indicated that the maximum depth of microseismicity is controlled by the 600-℃isotherm.However,this perspective is being challenged due to increasing observations of deep earthquakes that far exceed this suggested isotherm along mid-ocean ridges and oceanic transform faults.Several mechanisms have been proposed to explain these deep events,and we suggest that local geodynamic processes(e.g.,magma supply,mylonite shear zone,longlived faults,hydrothermal vents,etc.)likely play a more important role than previously thought.展开更多
The relation of heat flow and floor depth across the mid-ocean ridges versus lithosphere age can be described by linear functions of square root of age according to plate thermal conductive Half Space Models(HSM).Howe...The relation of heat flow and floor depth across the mid-ocean ridges versus lithosphere age can be described by linear functions of square root of age according to plate thermal conductive Half Space Models(HSM).However,one of the long-standing problems of these classical models is the discrepancies between predicted and observed heat flow and floor depth for very young and very old lithosphere.There have been several recent attempts to overcome this problem:one model incorporates temperature-and pressure-dependent parameters and the second model includes an additional low-conductivity crustal layer or magma rich mantle layer(MRM).Alternatively,in the current paper,the ordinary density of lithosphere in the plate conductive models is substituted with a reduction of lithosphere density towards axis that features the irregularity and nonlinearity of plates across the mid-ocean ridges.A new model is formulated incorporating the new form of density for predicting both peak heat flow and floor depth.Simple solutions of power-law forms derived from the model can significantly improve the predicting results of heat flow and floor depth over the mid-ocean ridges.Several datasets in the literature were reutilized for model validation and comparison.These datasets include both earlier datasets used for original model calibration and the more recently compiled high-quality datasets with both sedimentary and crustal loading corrections.The results indicate that both the heat flow and the slope(first orderderivative)of sea floor approach infinity(undifferentiability or singularities)around the mid-ocean ridges.These singularities are partially due to the boundary condition as it has been already known in the literature and partially to the reduction of density of lithosphere as discovered for the first time in the current research.展开更多
Six hydrothermal sediment samples were collected from the Xunmei and Tongguan hydrothermal fields along the southern Mid-Atlantic Ridge during the China Ocean Cruise DY46 in 2017.Sulfides and oxides in the samples wer...Six hydrothermal sediment samples were collected from the Xunmei and Tongguan hydrothermal fields along the southern Mid-Atlantic Ridge during the China Ocean Cruise DY46 in 2017.Sulfides and oxides in the samples were separated,and Cu and Zn isotope compositions were analyzed.Results show that the ranges ofδ^(65)Cu values of the bulk sediments,sulfides,and oxides were 0.36‰-2.46‰,-0.21‰-1.10‰,and 0.68‰-1.52‰,respectively.Theδ^(65)Cu values of sulfides in four samples(46II-14,46II-30,46III-06,and 46II-09)were relatively low(-0.21‰-0.50‰),corresponding to theδ^(65)Cu values of sulfides from inactive old hydrothermal chimneys in northern Mid-Atlantic Ridge(n MAR),suggesting that the sulfides in the sediments were originated from collapsed dead chimney mainly.While theδ^(65)Cu values of the other two samples(46III-02 and 46III-08)were relatively high(1.10‰-0.96‰),corresponding to theδ^(65)Cu values for active hydrothermal chimneys sulfides in n MAR,which indicated that the sulfides in these two samples might mainly come from sulfide particles settled from active hydrothermal plume.Because of the high density of sulfide particles,they tended to settle near the hydrothermal vents first.Therefore,highδ^(65)Cu values of sulfides in 46III-02 and 46III-08 implied that undiscovered active hydrothermal vents near the sampling positions of 46III-02 in the Xunmei hydrothermal field and 46III-08 in the Tongguan hydrothermal field.Theδ^(66)Zn values of hydrothermal sediments and sulfides ranged 0.11‰-0.43‰and 0.29‰-0.67‰,respectively.In the four samples from the Xunmei hydrothermal field,a positive correlation was found between the distance of the sampling position from sulfide mineralized spot and the Zn isotopic ratio,showing that the greater the distance from the mineralized spot,the heavier the Zn isotope composition as seen in two samples(46II-30 and 46II-14)of the Xunmei-3 spot.This result aligned with the findings of Wilkinson et al.(2005)and Baumgartner et al.(2023),suggesting that the lower the Zn isotope composition,the closer it is to the hydrothermal vent.However,in the Xunmei hydrothermal field,the Zn isotope composition in the other two samples(46III-02and 46III-06)showed the opposite trend.This indicated that there might be an active hydrothermal vent near the sampling location of sample 46III-02.This observation aligned with the Cu isotope analysis results.This study showed that Cu-Zn isotopes are good indicators for understanding the formation mechanisms of hydrothermal sediments and for locating active hydrothermal vents.展开更多
A new hydrothermal field(Tianshi)was discovered on the rift valley wall through plume anomaly surveys and geological work conducted in 2012 and 2018 between 2°35′N and 2°43′N of the slow-spreading Carlsber...A new hydrothermal field(Tianshi)was discovered on the rift valley wall through plume anomaly surveys and geological work conducted in 2012 and 2018 between 2°35′N and 2°43′N of the slow-spreading Carlsberg Ridge(CR).Here,the results of two expeditions conducted to detect and characterize the new hydrothermal field are reported.Mineralogical and geochemical data,as well as 14 C ages of a sediment core collected near the field are presented to reveal the hydrothermal history.Results show that the Tianshi field is a basalt-hosted hydrothermal system.Geochemical data of the sediments collected near the field indicate a strong hydrothermal contribution,and hydrothermal Fe and Cu fluxes range from 30 to 155 mg/(cm^(2)·ka)and 0.59 to 11.49 mg/(cm^(2)·ka),respectively.Temporal variations in the fluxes of hydrothermal Fe indicate that there have been at least three amplified hydrothermal venting events(H 1,H 2,and H 3)in the Tianshi field over the last 35.2 ka,in 28.6-35.2 ka BP,22.0-27.6 ka BP,and 1.2-11.4 ka BP,respectively.Hydrothermal event H 2 was driven by an increased magmatic production associated with sea level fall during the Last Glacial Maximum,while event H 3 was promoted by tectonic activity associated with a rapid sea level rise.This study further verified the role of sea level change in modulating hydrothermal activity on mid-ocean ridges.展开更多
In 2018 and 2021,the Drift-Towing Ocean Profilers(DTOP)provided extensive temperature and salinity data on the upper 120m ocean through their drifts over the Alpha Ridge north of the Canada Basin.The thickness and tem...In 2018 and 2021,the Drift-Towing Ocean Profilers(DTOP)provided extensive temperature and salinity data on the upper 120m ocean through their drifts over the Alpha Ridge north of the Canada Basin.The thickness and temperature maximum of Alaska Coastal Water(ACW)ranged from 20m to 40m and-1.5℃to-0.8℃,respectively,and the salinity generally maintained from 30.2 to 32.5.Comparison with World Ocean Atlas 2018’s climatology manifested a 40m-thick and warm ACW roughly ex-ceeding the temperature maximum by 0.4–0.5℃in June–August 2021.This anomalously warm ACW was highly related to the ex-pansion of the Beaufort Gyre in the negative Arctic Oscillation phase.During summer,the under-ice oceanic heat flux F_(w)^(OHF)was elevated,with a maximum value of above 25Wm^(-2).F_(w)^(OHF)was typically low in the freezing season,with an average value of 1.2Wm^(-2).The estimates of upward heat flux contributed by ACW to the sea ice bottom F_(w)^(OHF)were in the range of 3–4Wm^(-2)in June–August 2021,when ACW contained a heat content of more than 80MJm^(-2).The heat loss over this period was driven by a weak stratification upon the ACW layer associated with a surface mixed layer(SML)approaching the ACW core.After autumn,F_(w)^(OHF)was reduced(<2 Wm^(-2))except during rare events when it elevated F_(w)^(OHF)slightly.In addition,the intensive and widespread Ekman suction,which created a violent upwelling north of the Canada Basin,was largely responsible for the substantial cooling and thinning of the ACW layer in the summer of 2021.展开更多
The Greenland–Iceland–Faroe Ridge,located between the central eastern part of Greenland and the northwestern edge of Europe,spans across the North Atlantic.As the core component of the Greenland–Iceland–Faroe Ridg...The Greenland–Iceland–Faroe Ridge,located between the central eastern part of Greenland and the northwestern edge of Europe,spans across the North Atlantic.As the core component of the Greenland–Iceland–Faroe Ridge,the Iceland is an alkaline basalt area,which belongs to the periodic submarine magmatism and submarine volcano eruption resulting from mantle plume upwelling(Jiang et al.,2020).For the oceanic plateaus,the characteristics of the Iceland are closest to the continental crust,so the Iceland is considered the most suitable for simulating the earliest continental crust on the Earth(Reimink et al.,2014).展开更多
The extended kernel ridge regression(EKRR)method with odd-even effects was adopted to improve the description of the nuclear charge radius using five commonly used nuclear models.These are:(i)the isospin-dependent A^(...The extended kernel ridge regression(EKRR)method with odd-even effects was adopted to improve the description of the nuclear charge radius using five commonly used nuclear models.These are:(i)the isospin-dependent A^(1∕3) formula,(ii)relativistic continuum Hartree-Bogoliubov(RCHB)theory,(iii)Hartree-Fock-Bogoliubov(HFB)model HFB25,(iv)the Weizsacker-Skyrme(WS)model WS*,and(v)HFB25*model.In the last two models,the charge radii were calculated using a five-parameter formula with the nuclear shell corrections and deformations obtained from the WS and HFB25 models,respectively.For each model,the resultant root-mean-square deviation for the 1014 nuclei with proton number Z≥8 can be significantly reduced to 0.009-0.013 fm after considering the modification with the EKRR method.The best among them was the RCHB model,with a root-mean-square deviation of 0.0092 fm.The extrapolation abilities of the KRR and EKRR methods for the neutron-rich region were examined,and it was found that after considering the odd-even effects,the extrapolation power was improved compared with that of the original KRR method.The strong odd-even staggering of nuclear charge radii of Ca and Cu isotopes and the abrupt kinks across the neutron N=126 and 82 shell closures were also calculated and could be reproduced quite well by calculations using the EKRR method.展开更多
The Ninety East Ridge in the Indian Ocean has complex and unique characteristics.The concentrations and distribution characteristics of 10 trace metals(V,Cr,Mn,Fe,Co,Ni,Cu,Cd,Pb,and U)in seawater from the Ninety East ...The Ninety East Ridge in the Indian Ocean has complex and unique characteristics.The concentrations and distribution characteristics of 10 trace metals(V,Cr,Mn,Fe,Co,Ni,Cu,Cd,Pb,and U)in seawater from the Ninety East Ridge in the Indian Ocean were investigated.Results show that the average concentrations of different trace metals in all the collected seawater samples were 1.134μg/L for V,0.158μg/L for Cr,0.489μg/L for Mn,0.427μg/L for Fe,0.011μg/L for Co,0.395μg/L for Ni,0.403μg/L for Cu,0.097μg/L for Cd,0.139μg/L for Pb,and 3.470μg/L for U.Differences in the horizontal and vertical distributions of all measured trace metals were revealed,and the occurrence of high concentrations was nonuniform.In addition,the significant differences in the concentration distribution of different trace metals in seawater on both sides of the Ninety East Ridge present regional segmentation in the area for various trace metals in deep sea water.This study provided basic data for future investigations on the environmental and ecological impact of trace metals in the Indian Ocean and the potential water mass transport mechanism.展开更多
The Kyushu–Palau Ridge(KPR),an anti-S-shaped submarine highland at the center of the Philippine Sea Plate(PSP),is considered the residual arc of the Izu–Bonin–Mariana Island Arc,which retains key information about ...The Kyushu–Palau Ridge(KPR),an anti-S-shaped submarine highland at the center of the Philippine Sea Plate(PSP),is considered the residual arc of the Izu–Bonin–Mariana Island Arc,which retains key information about the cessation of the Western Philippine Basin(WPB)expansion and the Parece Vela Basin(PVB)breakup.Herein,using the new generation of satellite altimetry gravity data,high-precision seafloor topography data,and newly acquired ship-borne gravity data,the topographic and gravity characteristics of the KPR mid-southern section and adjacent region are depicted.The distribution characteristics of the faults were delineated using the normalized vertical derivative–total horizontal derivative method(NVDR-THDR)and the minimum curvature potential field separation method.The Moho depth and crustal thickness were inverted using the rapid inversion method for a double-interface model with depth constraints.Based on these results,the crust structure features in the KPR mid-southern section,and the“triangular”structure geological significance where the KPR and Central Basin Rift(CBR)of the WPB intersect are interpreted.The KPR crustal thickness is approximately 6–16 km,with a distinct discontinuity that is slightly thicker than the normal oceanic crust.The KPR mid-southern section crust structure was divided into four segments(S1–S4)from north to south,formed by the CBR eastward extension joint action and clockwise rotation of the PVB expansion axis and the Mindanao fault zone blocking effect.展开更多
Ground penetrating radar (GPR) surveys have being applied to investigate very near-surface stratification of sedimentary units in coastal plains and to define their depositional conditions. This paper presents, howeve...Ground penetrating radar (GPR) surveys have being applied to investigate very near-surface stratification of sedimentary units in coastal plains and to define their depositional conditions. This paper presents, however, low-frequency GPR survey to investigate fault-related depositional systems at greater depths. The Quinta-Cassino area in the Rio Grande do Sul Coastal Plain (RGSCP, Brazil) shows a wide strandplain that is made off by very long, continuous, and linear geomorphic features (beach ridges). This strandplain extends for ~70 km southward. The beach ridges show low-angle truncations against the Quinta escarpment, and also truncations in the strandplain. The traditional approach points that RGSCP was developed by juxtaposition of four lagoons/barrier systems as consequence of sea level changes;previous model assumes that no deformational episode occurred in RGSCP. The geophysical and geological surveys carried out in this area showed the existence of listric fault controlling the beach ridges in the escarpments and hanging-wall blocks. The radargrams could distinguish Pleistocene basement unit anticlockwise rotation, thickening of beach ridges radarfacies close to listric normal faults, and horst structures. These deformational features indicate that the extensional zone of a large-scale gravity-driven structure controlled the mechanical subsidence, the Holocene sedimentation and its stratigraphic and geomorphic features in the Quinta-Cassino area to build up an asymmetric delta. The results point to a new approach in dealing with RGSCP Holocene evolution.展开更多
The fully mulched ridge–furrow(FMRF) system has been widely used on the semi-arid Loess Plateau of China due to its high maize(Zea mays L.) productivity and rainfall use efficiency. However, high outputs under this s...The fully mulched ridge–furrow(FMRF) system has been widely used on the semi-arid Loess Plateau of China due to its high maize(Zea mays L.) productivity and rainfall use efficiency. However, high outputs under this system led to a depletion of soil moisture and soil nutrients, which reduces its sustainability in the long run. Therefore, it is necessary to optimize the system for the sustainable development of agriculture. The development, yield-increasing mechanisms,negative impacts, optimization, and their relations in the FMRF system are reviewed in this paper. We suggest using grain and forage maize varieties instead of regular maize;mulching plastic film in autumn or leaving the mulch after maize harvesting until the next spring, and then removing the old film and mulching new film;combining reduced/notillage with straw return;utilizing crop rotation or intercropping with winter canola(Brassica campestris L.), millet(Setaria italica), or oilseed flax(Linum usitatissimum L.);reducing nitrogen fertilizer and partially replacing chemical fertilizer with organic fertilizer;using biodegradable or weather-resistant film;and implementing mechanized production. These integrations help to establish an environmentally friendly, high quality, and sustainable agricultural system, promote highquality development of dryland farming, and create new opportunities for agricultural development in the semi-arid Loess Plateau.展开更多
Flat subduction can significantly influence the distribution of volcanism,stress state,and surface topography of the overriding plate.However,the mechanisms for inducing flat subduction remain controversial.Previous t...Flat subduction can significantly influence the distribution of volcanism,stress state,and surface topography of the overriding plate.However,the mechanisms for inducing flat subduction remain controversial.Previous two-dimensional(2-D)numerical models and laboratory analogue models suggested that a buoyant impactor(aseismic ridge,oceanic plateau,or the like)may induce flat subduction.However,three-dimensional(3-D)systematic studies on the relationship between flat subduction and buoyant blocks are still lacking.Here,we use a 3-D numerical model to investigate the influence of the aseismic ridge,especially its width(which is difficult to consider in 2-D numerical models),on the formation of flat subduction.Our model results suggest that the aseismic ridge needs to be wide and thick enough to induce flat subduction,a condition that is difficult to satisfy on the Earth.We also find that the subduction of an aseismic ridge parallel to the trench or a double aseismic ridge normal to the trench has a similar effect on super-wide aseismic ridge subduction in terms of causing flat subduction,which can explain the flat subduction observed beneath regions such as Chile and Peru.展开更多
Unlike traditional ridging, mulching broad ridges with a woven polypropylene fabric (WPF) can reduce soil evaporation during the drought season and avoid long saturation time in the root zone of pear trees during the ...Unlike traditional ridging, mulching broad ridges with a woven polypropylene fabric (WPF) can reduce soil evaporation during the drought season and avoid long saturation time in the root zone of pear trees during the rainy season. In this study, field experiments were conducted from 2017 to 2020 in a pear orchard in the North China Plain to investigate the effects of mulching broad ridges (0.3 m in height and 2 m in width) with WPF on soil temperature and moisture, nitrogen leaching, vegetative and reproductive growth of young pear trees(Pyrus bretschneideri Rehd.‘Yuluxiang’). The experiments involved two treatments, namely, control (traditional no-ridge planting without mulching) and mulching broad ridges with WPF (RM treatment). The results showed that the RM treatment increased soil moisture and temperature and decreased nitrogen leaching, resulting in vigorous growth of the young pear trees. Moreover, the RM treatment increased the tree trunk cross-sectional area and height of the young pear trees by 37%and 8%in 2020, respectively. The nitrate nitrogen content at the soil layer depth of 0-30 cm was significantly higher in the RM than that in control. Furthermore, the RM treatment significantly increased the fruit yield due to larger tree size. In addition, compared with control, significantly higher fruit soluble solid content of RM treatment was detected in 2020. High precipitation (423 mm) occurred during fruit enlargement stage in 2020, RM treatment decreased the rainfall infiltration in the ridge and the soil moisture in root region, resulting in the improvement of fruit quality, compared with control.Therefore, mulching broad ridges with WPF can be implemented to increase soil moisture during drought season, soil temperature, and nitrate nitrogen content, thereby improving the growth and fruit yield of young pear trees. Additionally, it can reduce soil moisture in the root zone during the rainy season and improve the fruit quality of the trees. Finally, it can reduce nitrate nitrogen leaching, thereby reducing environmental pollution.展开更多
基金the National Natural Science Foundation of China(Nos.42176087,42322605)the Laoshan Laboratory(No.LSKJ202204100)the Youth Innovation Promotion Association,Chinese Academy of Sciences(No.2021206)。
文摘The molybdenum(Mo)isotope system is pivotal in reconstructing marine redox changes throughout Earth’s history and has emerged as a promising tracer for igneous and metamorphic processes.Understanding its composition and variation across major geochemical reservoirs is essential for its application in investigating high-temperature processes.However,there is debate regarding theδ^(98/95)Mo value of the Earth’s mantle,with estimates ranging from sub-chondritic to super-chondritic values.Recent analyses of global mid-ocean ridge basalt(MORB)glasses revealed significantδ^(98/95)Mo variations attributed to mantle heterogeneity,proposing a two-component mixing model to explain the observed variation.Complementary studies confirmed the sub-chondriticδ^(98/95)Mo of the depleted upper mantle,suggesting remixing of subduction-modified oceanic crust as a plausible mechanism.These findings underscore the role of Mo isotopes as effective tracers for understanding dynamic processes associated with mantle-crustal recycling.
基金Supported by the National Natural Science Foundation of China(Nos.41773009,41873002)the Stake Key Laboratory of Geological Processes and Mineral Resources(No.GPMR201708)+2 种基金the National Science Foundation for Post-doctoral Scientists of China(No.2018M640660)the Taishan Scholar Program of Shandong(No.TS201712075)the AoShan Talents Cultivation Program Supported by Qingdao National Laboratory for Marine Science and Technology(No.2017ASTCP-OS07)。
文摘A number of high-temperature processes(e.g.,melt-rock reactions,metasomatism,partial melting)can produce signifi cant Ca isotopic fractionation and heterogeneity in the mantle,but the mechanism for such fractionation remains obscure.To investigate the eff ect of mantle partial melting on Ca isotopic fractionation,we reported high-precision Ca isotopic compositions of depleted mid-ocean ridge basalts(MORBs)from the East Pacifi c Rise and Ecuador Rift in the northeastern Pacifi c.Theδ44/40 Ca of these MORB samples exhibit a narrow variation from 0.84‰to 0.88‰with an average of 0.85‰±0.03‰,which are similar to those of reported MORBs(0.83‰±0.11‰)and back-arc basin basalts(BABBs,0.80‰±0.08‰)in literature,but are lower than the estimate value for the bulk silicate Earth(BSE,0.94‰±0.05‰).The lowδ44/40 Ca signatures of MORB samples in this study cannot be caused by fractional crystallization,since intermediate-mafi c diff erentiation has been demonstrated having only limited eff ects on Ca isotopic fractionation.Instead,the off set ofδ44/40 Ca between MORBs and the BSE is most likely produced by mantle partial melting.During this process,the light Ca isotopes are preferentially transferred to the melt,while the heavy ones tend to stay in the residue,which is consistent with the fact thatδ44/40 Ca of melt-depleted peridotites increases with partial melting in literature.The behavior of Ca isotopes during mantle partial melting is closely related to the inter-mineral(Cpx and Opx)Ca isotopic fractionation and melting mineral modes.Mantle partial melting is one of the common processes that can induce lowerδ44/40 Ca values in basalts and Ca isotopic heterogeneity in Earth’s mantle.
基金supported by the DFG(Deutsche Forschungsgemeinschaft)project KO 1723/17
文摘Multichannel seismic studies performed at fastspreading mid-ocean ridges revealed the presence of a thin(tens to hundreds of meters high), narrow(< 1-2 km wide) axial melt lens(AML) in the mid-crust, which is underlain by crystal/melt mush that is in turn laterally surrounded by a transition zone of mostly solidified material. In order to shed light on the complexity of magmatic and metamorphic processes ongoing within and at the roof of axial melt lenses, we have focused on the petrological and geochemical record provided by fossilized AMLs. Of particular significance is Hole 1256D in the equatorial Pacific drilled by the International Ocean Discovery Program(IODP), where for the first time, the transition between sheeted dikes and gabbros in intact fast-spreading crust was penetrated, providing a drill core with a more or less continuous record of the upper part of an AML(Teagle et al., 2006;Koepke et al., 2008). This can be regarded as rosetta stone to answer longstanding questions on the complex magmatic evolution within an AML, as well as on metamorphic and anatectic processes ongoing at the roof of a dynamic AML, rising upward in the midcrust as a consequence of a replenishment event. The plutonic rocks drilled from Hole 1256D consist of quartz-bearing gabbros, diorites and tonalites, which might represent the upper part of a fossilized AML. The gabbros and diorites are consistent with modeled products of MORB fractional crystallization, composed of mixed melt and cumulate in varying ratios. Modeled trace elements support a model in which the tonalites originated from low-degree partial melting of the sheeted dikes overlying the AML, rather than extreme fractional crystallization(Erdmann et al., 2015;Zhang et al., 2017a). Therefore, the upper part of AML, largely composed of low density and high-viscosity felsic magmas, may serve as a barrier to eruptible MORB melts in the lower part of AML. Zoning of apatites from three different lithologies, tonalites, diorites, and gabbros, is common and shows a consistent evolution trend with depletion in Cl and REEs from core to rim. The cores are usually homogenous in composition and interpreted as magmatic origin, whereas zones with lower Cl and REEs are disseminated with heterogeneous concentrations, indicating exchanges with hydrothermal fluids. The high-Cl apatite core indicates assimilation of high-Cl brines at a magmatic stage, which is interpreted as immiscibility product from cycling seawater-derived fluids at a high temperature(Zhang et al., 2017b). The variation of F/Cl and Br/Cl ratios of bull rocks may reflect the mixing between MORB magmas and seawater-derived fluids, crystallization of apatite and amphibole, and/or extraction of magmatic fluids(Zhang et al., 2017c).
文摘The high-pressure metamorphosed Gridino dyke swarm comprises a major group of Mesoarchean 2.87-2.82 Ga mafic dykes intruded within the Mesoarchean continental crust of the Kola craton(the Belomorian tectonic province
基金The Basic Scientific Fund for National Public Research Institutes of China under contract No.2015G07the National Programme on Global Change and Air-Sea Interaction under contract Nos GASI-GEOGE-02+4 种基金the National Natural Science Foundation of China under contract Nos 41506079,41576052,41506068,41322036 and 41776070the AoShan Talents Program Supported by Qingdao National Laboratory for Marine Science and Technology under contract No.2015ASTP-ES16the Taishan Scholarship from Shandong Provincethe Research Grant of State Key Laboratory of Isotope Geochemistry,Guangzhou Institute of Geochemistry,Chinese Academy of Sciences under contract No.SKLIG-KF-14-03the China Postdoctoral Science Foundation under contract No.2016M592120
文摘Mid-ocean ridge basalts(MORBs) are characterized by large variations in trace element compositions and isotopic ratios, which are difficult to be interpreted solely by using magmatic process such as partial melting of a peridotitic mantle and subsequently fractional crystallization. Geochemical diversity of MORBs have been attributed to large-scale heterogeneity within the underlying mantle, and the heterogeneity might have been caused by addition of recycled crustal component, subcontinental lithosphere, metasomatized lithosphere and outer core contribution. In this study, we investigated the MORBs along the Mid-Atlantic Ridge(MAR) by estimating the temperature and pressure of partial melting, and comprehensively comparing trace element and isotope ratios. The data for MORBs from areas close to mantle plumes show large variations. Mantle plumes can affect mid-oceanic ridges 1 400 km away, but plume effects did not cover all of the ridge segments, and those segments without plume effects did not have any abnormalities in temperature, trace element or isotope ratios.We ascribed the above phenomena to result from the shapes of the plume flow, which we categorized as "pipelike channels" and "pancake-like channels". The "pancake-like channels" plumes affected the ambient mantle nondirectionally, but the range of the mantle affected by the "pipe-like channels" plumes were selective. Element ratios of MORBs reveal that the mantle source of the MORBs along the MAR is highly heterogeneous. We suggest that most of source heterogeneities of the MORBs may be due to the presence of subducted slab and delaminated lower crust in the source. In addition, the plume that carried materials from the core-mantle boundary may affect some of the segments.
基金supported by the grant of China Ocean Mineral Resources R&D Association(DY135-S2-1-01)
文摘Fracture-fissure systems found at mid-ocean ridges are dominating conduits for the circulation of metallogenic fluid.Ascertaining the distribution area of active faults on both sides of mid-ocean ridges will provide a useful tool in the search for potential hydrothermal vents,thus guiding the exploration of modern seafloor sulfides.Considering the MidAtlantic Ridge 20°N–24°N(NMAR)and North Chile Rise(NCR)as examples,fault elements such as Fault Spacing(?S)and Fault Heave(?X)can be identified and quantitatively measured.The methods used include Fourier filtering of the multi-beam bathymetry data,in combination with measurements of the topographic slope,curvature,and slope aspect patterns.According to the Sequential Faulting Model of mid-ocean ridges,the maximal migration distance of an active fault on either side of mid-ocean ridges—that is,the distribution range of active faults—can be measured.Results show that the maximal migration distance of active faults at the NMAR is 0.76–1.01 km(the distance is larger at the center than at the ends of this segment),and at the NCR,the distribution range of active faults is 0.38–1.6 km.The migration distance of active faults on the two study areas is positively related to the axial variation of magma supply.In the NCR study area,where there is an abundant magma input,the number of faults within a certain distance is mainly affected by the variation of lithospheric thickness.Here a large range of faulting clearly corresponds to a high proportion of magmatism to seafloor spreading near mid-ocean ridges(M)value,and in the study area of the NMAR,there is insufficient magmatism,and the number of faults may be controlled by both lithospheric thickness and magma supply,leading to a less obvious positive correlation between the distribution range of active faults and M.
基金Supported by the State Key Program of National Natural Science of China(No.42330308)the Project of Donghai Laboratory(No.DH-2022ZY0005)+4 种基金the Scientific Research Fund of the Second Institute of OceanographyMinistry of Natural Resources(No.QHXZ2301)the National Science Foundation for Distinguished Young Scholars of China(No.42025601)for Young Scientists of China(No.41906064)the Zhejiang Provincial Natural Science Foundation of China(No.LDQ24D060001)。
文摘Mid-ocean ridge and oceanic transforms are among the most prominent features on the seafloor surface and are crucial for understanding seafloor spreading and plate tectonic dynamics,but the deep structure of the oceanic lithosphere remains poorly understood.The large number of microearthquakes occurring along ridges and transforms provide valuable information for gaining an indepth view of the underlying detailed seismic structures,contributing to understanding geodynamic processes within the oceanic lithosphere.Previous studies have indicated that the maximum depth of microseismicity is controlled by the 600-℃isotherm.However,this perspective is being challenged due to increasing observations of deep earthquakes that far exceed this suggested isotherm along mid-ocean ridges and oceanic transform faults.Several mechanisms have been proposed to explain these deep events,and we suggest that local geodynamic processes(e.g.,magma supply,mylonite shear zone,longlived faults,hydrothermal vents,etc.)likely play a more important role than previously thought.
基金supported by National Natural Science Foundation of China(grant number 42050103)Guangdong Research Team Development Grant(grant number 2021ZT09H399)。
文摘The relation of heat flow and floor depth across the mid-ocean ridges versus lithosphere age can be described by linear functions of square root of age according to plate thermal conductive Half Space Models(HSM).However,one of the long-standing problems of these classical models is the discrepancies between predicted and observed heat flow and floor depth for very young and very old lithosphere.There have been several recent attempts to overcome this problem:one model incorporates temperature-and pressure-dependent parameters and the second model includes an additional low-conductivity crustal layer or magma rich mantle layer(MRM).Alternatively,in the current paper,the ordinary density of lithosphere in the plate conductive models is substituted with a reduction of lithosphere density towards axis that features the irregularity and nonlinearity of plates across the mid-ocean ridges.A new model is formulated incorporating the new form of density for predicting both peak heat flow and floor depth.Simple solutions of power-law forms derived from the model can significantly improve the predicting results of heat flow and floor depth over the mid-ocean ridges.Several datasets in the literature were reutilized for model validation and comparison.These datasets include both earlier datasets used for original model calibration and the more recently compiled high-quality datasets with both sedimentary and crustal loading corrections.The results indicate that both the heat flow and the slope(first orderderivative)of sea floor approach infinity(undifferentiability or singularities)around the mid-ocean ridges.These singularities are partially due to the boundary condition as it has been already known in the literature and partially to the reduction of density of lithosphere as discovered for the first time in the current research.
基金Supported by the National Natural Science Foundation of China(No.42106080)the Laboratory for Marine Geology+2 种基金China Ocean Mineral Resources R&D Association Project(No.DY135-S2-2-03)the Natural Science Foundation of Shandong Province(No.ZR2020QD074)the Talents Research Start-up Funding Project of Ludong University。
文摘Six hydrothermal sediment samples were collected from the Xunmei and Tongguan hydrothermal fields along the southern Mid-Atlantic Ridge during the China Ocean Cruise DY46 in 2017.Sulfides and oxides in the samples were separated,and Cu and Zn isotope compositions were analyzed.Results show that the ranges ofδ^(65)Cu values of the bulk sediments,sulfides,and oxides were 0.36‰-2.46‰,-0.21‰-1.10‰,and 0.68‰-1.52‰,respectively.Theδ^(65)Cu values of sulfides in four samples(46II-14,46II-30,46III-06,and 46II-09)were relatively low(-0.21‰-0.50‰),corresponding to theδ^(65)Cu values of sulfides from inactive old hydrothermal chimneys in northern Mid-Atlantic Ridge(n MAR),suggesting that the sulfides in the sediments were originated from collapsed dead chimney mainly.While theδ^(65)Cu values of the other two samples(46III-02 and 46III-08)were relatively high(1.10‰-0.96‰),corresponding to theδ^(65)Cu values for active hydrothermal chimneys sulfides in n MAR,which indicated that the sulfides in these two samples might mainly come from sulfide particles settled from active hydrothermal plume.Because of the high density of sulfide particles,they tended to settle near the hydrothermal vents first.Therefore,highδ^(65)Cu values of sulfides in 46III-02 and 46III-08 implied that undiscovered active hydrothermal vents near the sampling positions of 46III-02 in the Xunmei hydrothermal field and 46III-08 in the Tongguan hydrothermal field.Theδ^(66)Zn values of hydrothermal sediments and sulfides ranged 0.11‰-0.43‰and 0.29‰-0.67‰,respectively.In the four samples from the Xunmei hydrothermal field,a positive correlation was found between the distance of the sampling position from sulfide mineralized spot and the Zn isotopic ratio,showing that the greater the distance from the mineralized spot,the heavier the Zn isotope composition as seen in two samples(46II-30 and 46II-14)of the Xunmei-3 spot.This result aligned with the findings of Wilkinson et al.(2005)and Baumgartner et al.(2023),suggesting that the lower the Zn isotope composition,the closer it is to the hydrothermal vent.However,in the Xunmei hydrothermal field,the Zn isotope composition in the other two samples(46III-02and 46III-06)showed the opposite trend.This indicated that there might be an active hydrothermal vent near the sampling location of sample 46III-02.This observation aligned with the Cu isotope analysis results.This study showed that Cu-Zn isotopes are good indicators for understanding the formation mechanisms of hydrothermal sediments and for locating active hydrothermal vents.
基金Supported by the National Natural Science Foundation of China(No.41976075)the National Key Research and Development Program of China(No.2021YFF0501302)+1 种基金the Fundamental Research Funds for National Non-profit Institute Grant(No.JG 2103)the China Ocean Mineral Resources R&D Association Project(No.DY135-S 2-1-03)。
文摘A new hydrothermal field(Tianshi)was discovered on the rift valley wall through plume anomaly surveys and geological work conducted in 2012 and 2018 between 2°35′N and 2°43′N of the slow-spreading Carlsberg Ridge(CR).Here,the results of two expeditions conducted to detect and characterize the new hydrothermal field are reported.Mineralogical and geochemical data,as well as 14 C ages of a sediment core collected near the field are presented to reveal the hydrothermal history.Results show that the Tianshi field is a basalt-hosted hydrothermal system.Geochemical data of the sediments collected near the field indicate a strong hydrothermal contribution,and hydrothermal Fe and Cu fluxes range from 30 to 155 mg/(cm^(2)·ka)and 0.59 to 11.49 mg/(cm^(2)·ka),respectively.Temporal variations in the fluxes of hydrothermal Fe indicate that there have been at least three amplified hydrothermal venting events(H 1,H 2,and H 3)in the Tianshi field over the last 35.2 ka,in 28.6-35.2 ka BP,22.0-27.6 ka BP,and 1.2-11.4 ka BP,respectively.Hydrothermal event H 2 was driven by an increased magmatic production associated with sea level fall during the Last Glacial Maximum,while event H 3 was promoted by tectonic activity associated with a rapid sea level rise.This study further verified the role of sea level change in modulating hydrothermal activity on mid-ocean ridges.
基金supported by the National Natural Science Foundation of China(Nos.42276239 and 41941012)the National Key R&D Program of China(No.2019YFC1509101)the Fundamental Research Funds for the Central Universities(No.202165005).
文摘In 2018 and 2021,the Drift-Towing Ocean Profilers(DTOP)provided extensive temperature and salinity data on the upper 120m ocean through their drifts over the Alpha Ridge north of the Canada Basin.The thickness and temperature maximum of Alaska Coastal Water(ACW)ranged from 20m to 40m and-1.5℃to-0.8℃,respectively,and the salinity generally maintained from 30.2 to 32.5.Comparison with World Ocean Atlas 2018’s climatology manifested a 40m-thick and warm ACW roughly ex-ceeding the temperature maximum by 0.4–0.5℃in June–August 2021.This anomalously warm ACW was highly related to the ex-pansion of the Beaufort Gyre in the negative Arctic Oscillation phase.During summer,the under-ice oceanic heat flux F_(w)^(OHF)was elevated,with a maximum value of above 25Wm^(-2).F_(w)^(OHF)was typically low in the freezing season,with an average value of 1.2Wm^(-2).The estimates of upward heat flux contributed by ACW to the sea ice bottom F_(w)^(OHF)were in the range of 3–4Wm^(-2)in June–August 2021,when ACW contained a heat content of more than 80MJm^(-2).The heat loss over this period was driven by a weak stratification upon the ACW layer associated with a surface mixed layer(SML)approaching the ACW core.After autumn,F_(w)^(OHF)was reduced(<2 Wm^(-2))except during rare events when it elevated F_(w)^(OHF)slightly.In addition,the intensive and widespread Ekman suction,which created a violent upwelling north of the Canada Basin,was largely responsible for the substantial cooling and thinning of the ACW layer in the summer of 2021.
基金granted by National Natural Science Foundation of China(Grant No.42172224)。
文摘The Greenland–Iceland–Faroe Ridge,located between the central eastern part of Greenland and the northwestern edge of Europe,spans across the North Atlantic.As the core component of the Greenland–Iceland–Faroe Ridge,the Iceland is an alkaline basalt area,which belongs to the periodic submarine magmatism and submarine volcano eruption resulting from mantle plume upwelling(Jiang et al.,2020).For the oceanic plateaus,the characteristics of the Iceland are closest to the continental crust,so the Iceland is considered the most suitable for simulating the earliest continental crust on the Earth(Reimink et al.,2014).
基金This work was supported by the National Natural Science Foundation of China(Nos.11875027,11975096).
文摘The extended kernel ridge regression(EKRR)method with odd-even effects was adopted to improve the description of the nuclear charge radius using five commonly used nuclear models.These are:(i)the isospin-dependent A^(1∕3) formula,(ii)relativistic continuum Hartree-Bogoliubov(RCHB)theory,(iii)Hartree-Fock-Bogoliubov(HFB)model HFB25,(iv)the Weizsacker-Skyrme(WS)model WS*,and(v)HFB25*model.In the last two models,the charge radii were calculated using a five-parameter formula with the nuclear shell corrections and deformations obtained from the WS and HFB25 models,respectively.For each model,the resultant root-mean-square deviation for the 1014 nuclei with proton number Z≥8 can be significantly reduced to 0.009-0.013 fm after considering the modification with the EKRR method.The best among them was the RCHB model,with a root-mean-square deviation of 0.0092 fm.The extrapolation abilities of the KRR and EKRR methods for the neutron-rich region were examined,and it was found that after considering the odd-even effects,the extrapolation power was improved compared with that of the original KRR method.The strong odd-even staggering of nuclear charge radii of Ca and Cu isotopes and the abrupt kinks across the neutron N=126 and 82 shell closures were also calculated and could be reproduced quite well by calculations using the EKRR method.
基金Supported by the Natural Science Foundation of Shandong Province(No.ZR2021MD079)the APEC Cooperation Fund(No.WJ1323001)the Asian Cooperation Fund(No.WJ1223001)。
文摘The Ninety East Ridge in the Indian Ocean has complex and unique characteristics.The concentrations and distribution characteristics of 10 trace metals(V,Cr,Mn,Fe,Co,Ni,Cu,Cd,Pb,and U)in seawater from the Ninety East Ridge in the Indian Ocean were investigated.Results show that the average concentrations of different trace metals in all the collected seawater samples were 1.134μg/L for V,0.158μg/L for Cr,0.489μg/L for Mn,0.427μg/L for Fe,0.011μg/L for Co,0.395μg/L for Ni,0.403μg/L for Cu,0.097μg/L for Cd,0.139μg/L for Pb,and 3.470μg/L for U.Differences in the horizontal and vertical distributions of all measured trace metals were revealed,and the occurrence of high concentrations was nonuniform.In addition,the significant differences in the concentration distribution of different trace metals in seawater on both sides of the Ninety East Ridge present regional segmentation in the area for various trace metals in deep sea water.This study provided basic data for future investigations on the environmental and ecological impact of trace metals in the Indian Ocean and the potential water mass transport mechanism.
基金‘Research on Deep Structural Differences between Potential Oil-rich Depressions in Offshore basins of China Sea’from the scientific and technological project of CNOOC Research Institute Co.,Ltd.,under contract No.CCL2021RCPS0167KQN‘Resource Potential,Accumulation Mechanism and Breakthrough Direction of Potential Oil-rich Depressions in Offshore China Sea’,under contract No.220226220101+1 种基金the Project of China Geological Survey under contract No.DD20191003the National Natural Science Foundation of Shandong Province of China under contract No.ZR2022MD047。
文摘The Kyushu–Palau Ridge(KPR),an anti-S-shaped submarine highland at the center of the Philippine Sea Plate(PSP),is considered the residual arc of the Izu–Bonin–Mariana Island Arc,which retains key information about the cessation of the Western Philippine Basin(WPB)expansion and the Parece Vela Basin(PVB)breakup.Herein,using the new generation of satellite altimetry gravity data,high-precision seafloor topography data,and newly acquired ship-borne gravity data,the topographic and gravity characteristics of the KPR mid-southern section and adjacent region are depicted.The distribution characteristics of the faults were delineated using the normalized vertical derivative–total horizontal derivative method(NVDR-THDR)and the minimum curvature potential field separation method.The Moho depth and crustal thickness were inverted using the rapid inversion method for a double-interface model with depth constraints.Based on these results,the crust structure features in the KPR mid-southern section,and the“triangular”structure geological significance where the KPR and Central Basin Rift(CBR)of the WPB intersect are interpreted.The KPR crustal thickness is approximately 6–16 km,with a distinct discontinuity that is slightly thicker than the normal oceanic crust.The KPR mid-southern section crust structure was divided into four segments(S1–S4)from north to south,formed by the CBR eastward extension joint action and clockwise rotation of the PVB expansion axis and the Mindanao fault zone blocking effect.
文摘Ground penetrating radar (GPR) surveys have being applied to investigate very near-surface stratification of sedimentary units in coastal plains and to define their depositional conditions. This paper presents, however, low-frequency GPR survey to investigate fault-related depositional systems at greater depths. The Quinta-Cassino area in the Rio Grande do Sul Coastal Plain (RGSCP, Brazil) shows a wide strandplain that is made off by very long, continuous, and linear geomorphic features (beach ridges). This strandplain extends for ~70 km southward. The beach ridges show low-angle truncations against the Quinta escarpment, and also truncations in the strandplain. The traditional approach points that RGSCP was developed by juxtaposition of four lagoons/barrier systems as consequence of sea level changes;previous model assumes that no deformational episode occurred in RGSCP. The geophysical and geological surveys carried out in this area showed the existence of listric fault controlling the beach ridges in the escarpments and hanging-wall blocks. The radargrams could distinguish Pleistocene basement unit anticlockwise rotation, thickening of beach ridges radarfacies close to listric normal faults, and horst structures. These deformational features indicate that the extensional zone of a large-scale gravity-driven structure controlled the mechanical subsidence, the Holocene sedimentation and its stratigraphic and geomorphic features in the Quinta-Cassino area to build up an asymmetric delta. The results point to a new approach in dealing with RGSCP Holocene evolution.
基金supported by the Major Special Research projects in Gansu Province, China (22ZD6NA009)the National Key R&D Program of China (2022YFD1900300)+4 种基金the State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, China (GSCS-2022-Z02)the Fostering Foundation for the Excellent Ph.D. Dissertation of Gansu Agricultural University, China (YB2020002)the Innovation Star Project for Excellent Graduate Student of Department of Education of Gansu Province, China (2021CXZX-369)the Young Instructor Fund Project of Gansu Agricultural University, China (GAU-QDFC-2020-03)the Science and Technology Project of Gansu Province, China (20JR5RA033)。
文摘The fully mulched ridge–furrow(FMRF) system has been widely used on the semi-arid Loess Plateau of China due to its high maize(Zea mays L.) productivity and rainfall use efficiency. However, high outputs under this system led to a depletion of soil moisture and soil nutrients, which reduces its sustainability in the long run. Therefore, it is necessary to optimize the system for the sustainable development of agriculture. The development, yield-increasing mechanisms,negative impacts, optimization, and their relations in the FMRF system are reviewed in this paper. We suggest using grain and forage maize varieties instead of regular maize;mulching plastic film in autumn or leaving the mulch after maize harvesting until the next spring, and then removing the old film and mulching new film;combining reduced/notillage with straw return;utilizing crop rotation or intercropping with winter canola(Brassica campestris L.), millet(Setaria italica), or oilseed flax(Linum usitatissimum L.);reducing nitrogen fertilizer and partially replacing chemical fertilizer with organic fertilizer;using biodegradable or weather-resistant film;and implementing mechanized production. These integrations help to establish an environmentally friendly, high quality, and sustainable agricultural system, promote highquality development of dryland farming, and create new opportunities for agricultural development in the semi-arid Loess Plateau.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB 41000000)the National Natural Science Foundation of China(Grant No.41820104004)the Fundamental Research Funds for the Central Universities(Grant No.WK2080000144).
文摘Flat subduction can significantly influence the distribution of volcanism,stress state,and surface topography of the overriding plate.However,the mechanisms for inducing flat subduction remain controversial.Previous two-dimensional(2-D)numerical models and laboratory analogue models suggested that a buoyant impactor(aseismic ridge,oceanic plateau,or the like)may induce flat subduction.However,three-dimensional(3-D)systematic studies on the relationship between flat subduction and buoyant blocks are still lacking.Here,we use a 3-D numerical model to investigate the influence of the aseismic ridge,especially its width(which is difficult to consider in 2-D numerical models),on the formation of flat subduction.Our model results suggest that the aseismic ridge needs to be wide and thick enough to induce flat subduction,a condition that is difficult to satisfy on the Earth.We also find that the subduction of an aseismic ridge parallel to the trench or a double aseismic ridge normal to the trench has a similar effect on super-wide aseismic ridge subduction in terms of causing flat subduction,which can explain the flat subduction observed beneath regions such as Chile and Peru.
基金financed by the China National Natural Science Fund (Grant No. 51609006)Science and Technology Innovation Capacity Building Program of Beijing Academy of Agriculture and Forestry (Grant No. KJCX20210437)+2 种基金the Presidential Foundation of the Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences (Grant No. 201902)the National Key Technology R & D Program of China (Grant No. 2019YFD1000100)。
文摘Unlike traditional ridging, mulching broad ridges with a woven polypropylene fabric (WPF) can reduce soil evaporation during the drought season and avoid long saturation time in the root zone of pear trees during the rainy season. In this study, field experiments were conducted from 2017 to 2020 in a pear orchard in the North China Plain to investigate the effects of mulching broad ridges (0.3 m in height and 2 m in width) with WPF on soil temperature and moisture, nitrogen leaching, vegetative and reproductive growth of young pear trees(Pyrus bretschneideri Rehd.‘Yuluxiang’). The experiments involved two treatments, namely, control (traditional no-ridge planting without mulching) and mulching broad ridges with WPF (RM treatment). The results showed that the RM treatment increased soil moisture and temperature and decreased nitrogen leaching, resulting in vigorous growth of the young pear trees. Moreover, the RM treatment increased the tree trunk cross-sectional area and height of the young pear trees by 37%and 8%in 2020, respectively. The nitrate nitrogen content at the soil layer depth of 0-30 cm was significantly higher in the RM than that in control. Furthermore, the RM treatment significantly increased the fruit yield due to larger tree size. In addition, compared with control, significantly higher fruit soluble solid content of RM treatment was detected in 2020. High precipitation (423 mm) occurred during fruit enlargement stage in 2020, RM treatment decreased the rainfall infiltration in the ridge and the soil moisture in root region, resulting in the improvement of fruit quality, compared with control.Therefore, mulching broad ridges with WPF can be implemented to increase soil moisture during drought season, soil temperature, and nitrate nitrogen content, thereby improving the growth and fruit yield of young pear trees. Additionally, it can reduce soil moisture in the root zone during the rainy season and improve the fruit quality of the trees. Finally, it can reduce nitrate nitrogen leaching, thereby reducing environmental pollution.