期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
CHARACTERISTICS OF MIDDLE EAST JET STREAM DURING SEASONAL TRANSITION AND ITS RELATION WITH INDIAN SUMMER MONSOON ONSET 被引量:4
1
作者 倪东鸿 孙照渤 +2 位作者 李忠贤 曾刚 邓伟涛 《Journal of Tropical Meteorology》 SCIE 2014年第3期208-217,共10页
By using the NCEP/NCAR pentad reanalysis data from 1968 to 2009, the variation characteristics of Middle East jet stream(MEJS) and its thermal mechanism during seasonal transition are studied. Results show that the in... By using the NCEP/NCAR pentad reanalysis data from 1968 to 2009, the variation characteristics of Middle East jet stream(MEJS) and its thermal mechanism during seasonal transition are studied. Results show that the intensity and south-north location of MEJS center exhibit obvious seasonal variation characteristics. When MEJS is strong, it is at 27.5°N from the 67 th pentad to the 24 th pentad the following year; when MEJS is weak, it is at 45°N from the 38 th pentad to the 44 th pentad. The first Empirical Orthogonal Function(EOF) mode of 200-hPa zonal wind field shows that MEJS is mainly over Egypt and Saudi Arabia in winter and over the eastern Black Sea and the eastern Aral Sea in summer. MEJS intensity markedly weakens in summer in comparison with that in winter. The 26th-31 st pentad is the spring-summer transition of MEJS, and the 54th-61 st pentad the autumn-winter transition. During the two seasonal transitions, the temporal variations of the 500-200 hPa south-north temperature difference(SNTD) well match with 200-hPa zonal wind velocity, indicating that the former leads to the latter following the principle of thermal wind. A case analysis shows that there is a close relation between the onset date of Indian summer monsoon and the transition date of MEJS seasonal transition. When the outbreak date of Indian summer monsoon is earlier than normal, MEJS moves northward earlier because the larger SNTD between 500-200 hPa moves northward earlier, with the westerly jet in the lower troposphere over 40°-90°E appearing earlier than normal, and vice versa. 展开更多
关键词 middle east jet stream seasonal transition characteristics thermal effect onset date of Indiansummer monsoon
下载PDF
WINTERTIME MIDDLE EAST SUBTROPICAL WESTERLY JET STREAM INTERANNUAL VARIATION CHARACTERISTICS AND ITS POSSIBLE PHYSICAL FACTORS 被引量:2
2
作者 吴玲玲 张建伟 +1 位作者 邓伟涛 倪东鸿 《Journal of Tropical Meteorology》 SCIE 2017年第4期380-395,共16页
Using National Centers for Environmental Prediction/Department of Energy(NCEP/DOE) monthly reanalysis data and an extended reconstruction of the sea surface temperature data provided by National Oceanic and Atmospheri... Using National Centers for Environmental Prediction/Department of Energy(NCEP/DOE) monthly reanalysis data and an extended reconstruction of the sea surface temperature data provided by National Oceanic and Atmospheric Administration, the basic characteristics of the interannual variation in the wintertime Middle East subtropical westerly jet stream(MEJ) and its possible physical factors are studied. The results show that the climatological mean MEJ axis extends southwestward-northeastward and that its center lies in the northwest part of the Arabian Peninsula. The south-north shift of the MEJ axis and its intensity show obvious interannual variations that are closely related to the ElNio-Southern Oscillation(ENSO) and the mid-high latitude atmospheric circulation. The zonal symmetric response of the Asian jet to the ENSO-related tropical convective forcing causes the MEJ axis shift, and the Arctic Oscillation(AO)causes the middle-western MEJ axis shift. Due to the influences of both the zonal symmetric response of the Asian jet to the ENSO-related tropical convective forcing and the dynamical role of the AO, an east-west out-of-phase MEJ axis shift is observed. Furthermore, the zonal asymmetric response to the ENSO-related tropical convective forcing can lead to an anomalous Mediterranean convergence(MC) in the high troposphere. The MC anomaly excites a zonal wave train along the Afro-Asian jet, which causes the middle-western MEJ axis shift. Under the effects of both the zonal symmetric response to the ENSO-related tropical convective forcing and the wave train along the Afro-Asian jet excited by the MC anomaly, an east-west in-phase MEJ axis shift pattern is expressed. Finally, the AO affects the MEJ intensity, whereas the East Atlantic(EA) teleconnection influences the middle-western MEJ intensity. Under the dynamical roles of the AO and EA, the change in the MEJ intensity is demonstrated. 展开更多
关键词 middle east subtropical westerly jet stream axis position INTENSITY atmospheric circulation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部