期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Tuning the growth of intermetallic compounds at Sn-0.7Cu solder/Cu substrate interface by adding small amounts of indium
1
作者 Ancang Yang Yaoping Lu +3 位作者 Yonghua Duan Mengnie Li Shanju Zheng Mingjun Peng 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第15期246-259,共14页
The void defect in intermetallic compounds(IMCs)layer at the joints caused by inhomogeneous atomic diffusion is one of the most important factors limiting the further development of Sn-based solders.In this work,the t... The void defect in intermetallic compounds(IMCs)layer at the joints caused by inhomogeneous atomic diffusion is one of the most important factors limiting the further development of Sn-based solders.In this work,the thermodynamic stability of IMCs(high-temperatureη-Cu_(6)Sn_(5)and o-Cu_(3)Sn phases)was improved by adding small amounts of indium(In),and the IMCs layers with moderate thickness,low defect concentrations and stable interface bonding were successfully obtained.The formation order of compounds and the interfacial orientation relationships in IMCs layers,the atomic diffusion mechanism,and the growth tuning mechanism of In onη-Cu_(6)Sn_(5)and Cu_(3)Sn,after In adding,were discussed com-prehensively by combining calculations and experiments.It is the first time that the classic heteroge-neous nucleation theory and CALPHAD data were used to obtain the critical nucleus radius ofη-Cu_(6)Sn_(5)and Cu_(3)Sn,and to explain in detail the main factors affecting the formation order and location of IMCs at joints during the welding process.A novel and systematic growth model about IMCs layers in the case of doping with alloying elements was proposed.The growth tuning mechanism of In doping onη-Cu_(6)Sn_(5)and Cu_(3)Sn was further clarified based on the proposed model using first-principles calculations.The growth model used in this study can provide insights into the development and design of multiele-ment Sn-based solders. 展开更多
关键词 Sn-0.7Cu solder IMCs AGING Atomic migration barrier Growth tuning
原文传递
Strain engineering of ion migration in LiCoO_(2) 被引量:2
2
作者 Jia-Jing Li Yang Dai Jin-Cheng Zheng 《Frontiers of physics》 SCIE CSCD 2022年第1期169-176,共8页
Strain engineering is a powerful approach for tuning various properties of functional materials. The influences of lattice strain on the Li-ion migration energy barrier of lithium-ions in layered LiCoO_(2) have been s... Strain engineering is a powerful approach for tuning various properties of functional materials. The influences of lattice strain on the Li-ion migration energy barrier of lithium-ions in layered LiCoO_(2) have been systemically studied using lattice dynamics simulations, analytical function and neural network method. We have identified two Li-ion migration paths, oxygen dumbbell hop (ODH), and tetrahedral site hop (TSH) with different concentrations of local defects. We found that Li-ion migration energy barriers increased with the increase of pressure for both ODH and TSH cases, while decreased significantly with applied tensile uniaxial c-axis strain for ODH and TSH cases or compressive in-plane strain for TSH case. Our work provides the complete strain-map for enhancing the diffusivity of Li-ion in LiCoO_(2), and therefore, indicates a new way to achieve better rate performance through strain engineering. 展开更多
关键词 LiCoO_(2) strain engineering migration energy barrier lithium-ion battery
原文传递
Structures, Stabilities and Work Functions of Alkali-metal-adsorbed Boron α1-Sheets 被引量:1
3
作者 YI Tingting ZHENG Bing +1 位作者 YU Haitao XIE Ying 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2017年第4期631-637,共7页
In this study, we employed the density functional theory method to simulate Li-, Na- and K-adsorbed boron α1-sheets(al-BSTs). After optimizing possible structures, we investigated their thermodynamic stabilities, b... In this study, we employed the density functional theory method to simulate Li-, Na- and K-adsorbed boron α1-sheets(al-BSTs). After optimizing possible structures, we investigated their thermodynamic stabilities, barriers for metal atom diffusion on the substrate, and work functions. The computed results indicate that the work function of α1-BST decreases significantly after the adsorption of Li, Na and K. Furthermore, under high hole coverage, these alkali-metal-adsorbed α1-BSTs have lower work functions than the two-dimensional materials of greatest concern and the commonly used electrode materials Ca and Mg. Therefore, the Li-, Na- and K-adsorbed α1-BSTs are potential low-work-function nanomaterials. 展开更多
关键词 Boron α1-sheet Binding energy migration barrier Alkali metal adsorption Work function
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部