O3-NaNi1/3Fe1/3Mn1/3O2is a promising layered cathode material with high specific capacity,low cost,and simple synthesis.However,sluggish kinetic hindrance is attributed to the size discrepancy between the large Na-ion...O3-NaNi1/3Fe1/3Mn1/3O2is a promising layered cathode material with high specific capacity,low cost,and simple synthesis.However,sluggish kinetic hindrance is attributed to the size discrepancy between the large Na-ion and narrow tetrahedral interstitial positions,leading to inferior rate capacity and low reversible capacity.Herein,F with light-weight and strong electronegativity is introduced to substitute O atoms in the bulk structure,which intensifies the bond strength of transition metal and oxygen and enlarges the Na+diffusion channel.In addition,density-functional theory(DFT) calculations demonstrate that the electrostatic interaction is weakened between Na+in the tetrahedral site and the transitionmetal cation directly below it,dramatically reducing the migration barriers of Na+diffusion.Consequently,the as-obtained NaNi1/3Fe1/3Mn1/3O1.95F0.05sample displays outstanding rate performance of 86.7 mA h g^(-1)at 10 C and excellent capacity retention of 84.1% after 100 cycles at 2 C.Moreover,a full cell configuration using a hard carbon anode reaches the energy density of 307.7 Wh kg^(-1).This strategy paves the way for novel means of modulating the Na-ion migration path for high-rate O3-type layered cathode materials.展开更多
The western Hubei-eastern Chongqing area is an important prospective zone for oil and gas exploration in the central Yangtze area. Three representative structures, the Xinchang structure, Longjuba gas-bearing structur...The western Hubei-eastern Chongqing area is an important prospective zone for oil and gas exploration in the central Yangtze area. Three representative structures, the Xinchang structure, Longjuba gas-bearing structure and the Jiannan gas field, were selected to analyze biomarker parameters in marine strata and to examine various types of natural gas and hydrocarbon sources. Fluid inclusions; carbon, oxygen, and strontium isotopic characteristics; organic geochemical analysis and simulation of hydrocarbon generation and expulsion history of source rocks were used for tracing fluid migration paths in marine strata of the study area. The Carboniferous-Triassic reservoirs in three typical structures all experienced at least two stages of fluid accumulation. All marine strata above the early Permian were shown to have fluids originating in the Permian rocks, which differed from the late stage fluids. The fluids accumulated in the late Permian reservoirs of the Xinchang structure were Cambrian fluids, while those in the late Carboniferous reservoirs were sourced from a combination of Silurian and Cambrian fluids. A long-distance and large-scale cross-formational flow of fluids destroyed the preservation conditions of earlier accumulated hydrocarbons. A short-distance cross-formational accumulation of Silurian fluids was shown in the late Permian reservoirs of the Longjuba structure with favorable hydrocarbon preservation conditions. The fluid accumulation in the Carboniferous reservoirs of the Jiannan structure mainly originated from neighboring Silurian strata with a small amount from the Cambrian strata. As a result, the Jiannan structure was determined to have the best preservation conditions of the three. Comparative analysis of fluid migration paths in the three structures revealed that the zone with a weaker late tectonism and no superimposition and modification of the Upper and Lower Paleozoic fluids or the Upper Paleozoic zone with the fluid charging from the Lower Paleozoic in the western Hubei-easteru Chongqing area are important target areas for future exploration.展开更多
Temperature variation and gas generation at diferent depths and positions in the coal combustion process were studied to determine the propagation and evolution of high temperature regions in the process of coal spont...Temperature variation and gas generation at diferent depths and positions in the coal combustion process were studied to determine the propagation and evolution of high temperature regions in the process of coal spontaneous combustion.This study selected coal samples from Mengcun,Shaanxi Province,People’s Republic of China,and developed a semi-enclosed experimental system(furnace)for simulating coal combustion.The thermal mass loss of coal samples under various heating rates(5,10,and 15℃/min)was analyzed through thermogravimetric analysis,and the dynamic characteristics of the coal samples were analyzed;the reliability of the semi-enclosed experimental system was verifed through the equal proportional method of fuzzy response.The results reveal that the high-temperature zone is distributed nonlinearly from the middle to the front end of the furnace,and the temperatures of points in this zone decreased gradually as the layer depth increased.The apparent activation energy of the coal samples during combustion frst increased and then decreased as the conversion degree increased.Furthermore,the proportion of mass loss and the mass loss rate in the coal samples observed in the thermogravimetric experiment is consistent with that observed in the frst and second stages of the experiment conducted using the semi-enclosed system.The research fndings can provide a theoretical basis for the prevention and control of hightemperature zones in coal combustion.展开更多
基金supported by Shaanxi Province (2023-ZDLGY-24,2023-JC-QN-0588)Xi’an Key Laboratory of Clean Energy(2019219914SYS014CG036)the Open Foundation of State Key Laboratory for Advanced Metals and Materials (2022-Z01)。
文摘O3-NaNi1/3Fe1/3Mn1/3O2is a promising layered cathode material with high specific capacity,low cost,and simple synthesis.However,sluggish kinetic hindrance is attributed to the size discrepancy between the large Na-ion and narrow tetrahedral interstitial positions,leading to inferior rate capacity and low reversible capacity.Herein,F with light-weight and strong electronegativity is introduced to substitute O atoms in the bulk structure,which intensifies the bond strength of transition metal and oxygen and enlarges the Na+diffusion channel.In addition,density-functional theory(DFT) calculations demonstrate that the electrostatic interaction is weakened between Na+in the tetrahedral site and the transitionmetal cation directly below it,dramatically reducing the migration barriers of Na+diffusion.Consequently,the as-obtained NaNi1/3Fe1/3Mn1/3O1.95F0.05sample displays outstanding rate performance of 86.7 mA h g^(-1)at 10 C and excellent capacity retention of 84.1% after 100 cycles at 2 C.Moreover,a full cell configuration using a hard carbon anode reaches the energy density of 307.7 Wh kg^(-1).This strategy paves the way for novel means of modulating the Na-ion migration path for high-rate O3-type layered cathode materials.
基金sponsored by National Programs for Fundamental Research and Development (973 Program,2012CB214805)the National Natural Science Foundation (40930424)
文摘The western Hubei-eastern Chongqing area is an important prospective zone for oil and gas exploration in the central Yangtze area. Three representative structures, the Xinchang structure, Longjuba gas-bearing structure and the Jiannan gas field, were selected to analyze biomarker parameters in marine strata and to examine various types of natural gas and hydrocarbon sources. Fluid inclusions; carbon, oxygen, and strontium isotopic characteristics; organic geochemical analysis and simulation of hydrocarbon generation and expulsion history of source rocks were used for tracing fluid migration paths in marine strata of the study area. The Carboniferous-Triassic reservoirs in three typical structures all experienced at least two stages of fluid accumulation. All marine strata above the early Permian were shown to have fluids originating in the Permian rocks, which differed from the late stage fluids. The fluids accumulated in the late Permian reservoirs of the Xinchang structure were Cambrian fluids, while those in the late Carboniferous reservoirs were sourced from a combination of Silurian and Cambrian fluids. A long-distance and large-scale cross-formational flow of fluids destroyed the preservation conditions of earlier accumulated hydrocarbons. A short-distance cross-formational accumulation of Silurian fluids was shown in the late Permian reservoirs of the Longjuba structure with favorable hydrocarbon preservation conditions. The fluid accumulation in the Carboniferous reservoirs of the Jiannan structure mainly originated from neighboring Silurian strata with a small amount from the Cambrian strata. As a result, the Jiannan structure was determined to have the best preservation conditions of the three. Comparative analysis of fluid migration paths in the three structures revealed that the zone with a weaker late tectonism and no superimposition and modification of the Upper and Lower Paleozoic fluids or the Upper Paleozoic zone with the fluid charging from the Lower Paleozoic in the western Hubei-easteru Chongqing area are important target areas for future exploration.
基金Financial support for this study was kindly provided by the National Natural Science Foundation Project of China(No.51804246,No.52174202)Natural Science Foundation of Xinjiang Province(No.2019D01C057)the Youth Talent Promotion Program of Shaanxi University Association for Science and Technology(No.20200425).
文摘Temperature variation and gas generation at diferent depths and positions in the coal combustion process were studied to determine the propagation and evolution of high temperature regions in the process of coal spontaneous combustion.This study selected coal samples from Mengcun,Shaanxi Province,People’s Republic of China,and developed a semi-enclosed experimental system(furnace)for simulating coal combustion.The thermal mass loss of coal samples under various heating rates(5,10,and 15℃/min)was analyzed through thermogravimetric analysis,and the dynamic characteristics of the coal samples were analyzed;the reliability of the semi-enclosed experimental system was verifed through the equal proportional method of fuzzy response.The results reveal that the high-temperature zone is distributed nonlinearly from the middle to the front end of the furnace,and the temperatures of points in this zone decreased gradually as the layer depth increased.The apparent activation energy of the coal samples during combustion frst increased and then decreased as the conversion degree increased.Furthermore,the proportion of mass loss and the mass loss rate in the coal samples observed in the thermogravimetric experiment is consistent with that observed in the frst and second stages of the experiment conducted using the semi-enclosed system.The research fndings can provide a theoretical basis for the prevention and control of hightemperature zones in coal combustion.