Millimeter-wave transmission combined with Orbital Angular Momentum(OAM)has the advantage of reducing the loss of beam power and increasing the system capacity.However,to fulfill this advantage,the antennas at the tra...Millimeter-wave transmission combined with Orbital Angular Momentum(OAM)has the advantage of reducing the loss of beam power and increasing the system capacity.However,to fulfill this advantage,the antennas at the transmitter and receiver must be parallel and coaxial;otherwise,the accuracy of mode detection at the receiver can be seriously influenced.In this paper,we design an OAM millimeter-wave communication system for overcoming the above limitation.Specifically,the first contribution is that the power distribution between different OAM modes and the capacity of the system with different mode sets are analytically derived for performance analysis.The second contribution lies in that a novel mode selection scheme is proposed to reduce the total interference between different modes.Numerical results show that system performance is less affected by the offset when the mode set with smaller modes or larger intervals is selected.展开更多
UAV-aided cellular networks,millimeter wave(mm-wave) communications and multi-antenna techniques are viewed as promising components of the solution for beyond-5G(B5G) and even 6G communications.By leveraging the power...UAV-aided cellular networks,millimeter wave(mm-wave) communications and multi-antenna techniques are viewed as promising components of the solution for beyond-5G(B5G) and even 6G communications.By leveraging the power of stochastic geometry,this paper aims at providing an effective framework for modeling and analyzing a UAV-aided heterogeneous cellular network,where the terrestrial base stations(TBSs) and the UAV base stations(UBSs) coexist,and the UBSs are provided with mm-wave and multi-antenna techniques.By modeling the TBSs as a PPP and the UBSs as a Matern hard-core point process of type Ⅱ(MPH-Ⅱ),approximated but accurate analytical results for the average rate of the typical user of both tiers are derived through an approximation method based on the mean interference-to-signal ratio(MISR) gain.The influence of some relevant parameters is discussed in detail,and some insights into the network deployment and optimization are revealed.Numerical results show that some trade-offs are worthy of being considered,such as the antenna array size,the altitude of the UAVs and the power control factor of the UBSs.展开更多
Millimeter wave(mmWave)massive multiple-input multiple-output(MIMO)plays an important role in the fifth-generation(5G)mobile communications and beyond wireless communication systems owing to its potential of high capa...Millimeter wave(mmWave)massive multiple-input multiple-output(MIMO)plays an important role in the fifth-generation(5G)mobile communications and beyond wireless communication systems owing to its potential of high capacity.However,channel estimation has become very challenging due to the use of massive MIMO antenna array.Fortunately,the mmWave channel has strong sparsity in the spatial angle domain,and the compressed sensing technology can be used to convert the original channel matrix into the sparse matrix of discrete angle grid.Thus the high-dimensional channel matrix estimation is transformed into a sparse recovery problem with greatly reduced computational complexity.However,the path angle in the actual scene appears randomly and is unlikely to be completely located on the quantization angle grid,thus leading to the problem of power leakage.Moreover,multiple paths with the random distribution of angles will bring about serious interpath interference and further deteriorate the performance of channel estimation.To address these off-grid issues,we propose a parallel interference cancellation assisted multi-grid matching pursuit(PIC-MGMP)algorithm in this paper.The proposed algorithm consists of three stages,including coarse estimation,refined estimation,and inter-path cyclic iterative inter-ference cancellation.More specifically,the angular resolution can be improved by locally refining the grid to reduce power leakage,while the inter-path interference is eliminated by parallel interference cancellation(PIC),and the two together improve the estimation accuracy.Simulation results show that compared with the traditional orthogonal matching pursuit(OMP)algorithm,the normalized mean square error(NMSE)of the proposed algorithm decreases by over 14dB in the case of 2 paths.展开更多
In this paper,we analyze a hybrid Heterogeneous Cellular Network(HCNet)framework by deploying millimeter Wave(mmWave)small cells with coexisting traditional sub-6GHz macro cells to achieve improved coverage and high d...In this paper,we analyze a hybrid Heterogeneous Cellular Network(HCNet)framework by deploying millimeter Wave(mmWave)small cells with coexisting traditional sub-6GHz macro cells to achieve improved coverage and high data rate.We consider randomly-deployed macro base stations throughout the network whereas mmWave Small Base Stations(SBSs)are deployed in the areas with high User Equipment(UE)density.Such user centric deployment of mmWave SBSs inevitably incurs correlation between UE and SBSs.For a realistic scenario where the UEs are distributed according to Poisson cluster process and directional beamforming with line-of-sight and non-line-of-sight transmissions is adopted for mmWave communication.By using tools from stochastic geometry,we develop an analytical framework to analyze various performance metrics in the downlink hybrid HCNets under biased received power association.For UE clustering we considered Thomas cluster process and derive expressions for the association probability,coverage probability,area spectral efficiency,and energy efficiency.We also provide Monte Carlo simulation results to validate the accuracy of the derived expressions.Furthermore,we analyze the impact of mmWave operating frequency,antenna gain,small cell biasing,and BSs density to get useful engineering insights into the performance of hybrid mmWave HCNets.Our results show that network performance is significantly improved by deploying millimeter wave SBS instead of microwave BS in hot spots.展开更多
A large amount of mobile data from growing high-speed train(HST)users makes intelligent HST communications enter the era of big data.The corresponding artificial intelligence(AI)based HST channel modeling becomes a tr...A large amount of mobile data from growing high-speed train(HST)users makes intelligent HST communications enter the era of big data.The corresponding artificial intelligence(AI)based HST channel modeling becomes a trend.This paper provides AI based channel characteristic prediction and scenario classification model for millimeter wave(mmWave)HST communications.Firstly,the ray tracing method verified by measurement data is applied to reconstruct four representative HST scenarios.By setting the positions of transmitter(Tx),receiver(Rx),and other parameters,the multi-scenarios wireless channel big data is acquired.Then,based on the obtained channel database,radial basis function neural network(RBF-NN)and back propagation neural network(BP-NN)are trained for channel characteristic prediction and scenario classification.Finally,the channel characteristic prediction and scenario classification capabilities of the network are evaluated by calculating the root mean square error(RMSE).The results show that RBF-NN can generally achieve better performance than BP-NN,and is more applicable to prediction of HST scenarios.展开更多
60 GHz millimeter wave(mmWave)system provides extremely high time resolution and multipath components(MPC)separation and has great potential to achieve high precision in the indoor positioning.However,the ranging data...60 GHz millimeter wave(mmWave)system provides extremely high time resolution and multipath components(MPC)separation and has great potential to achieve high precision in the indoor positioning.However,the ranging data is often contaminated by non-line-of-sight(NLOS)transmission.First,six features of 60GHz mm Wave signal under LOS and NLOS conditions are evaluated.Next,a classifier constructed by random forest(RF)algorithm is used to identify line-of-sight(LOS)or NLOS channel.The identification mechanism has excellent generalization performance and the classification accuracy is over 97%.Finally,based on the identification results,a residual weighted least squares positioning method is proposed.All ranging information including that under NLOS channels is fully utilized,positioning failure caused by insufficient LOS links can be avoided.Compared with the conventional least squares approach,the positioning error of the proposed algorithm is reduced by 49%.展开更多
In this paper,a Millimeter wave(mmWave)beam tracking problem is studied in orthogonal time frequency space(OTFS)systems.Considering the nonlinearity of beamforming and the constraints of existing Kalman-filtering base...In this paper,a Millimeter wave(mmWave)beam tracking problem is studied in orthogonal time frequency space(OTFS)systems.Considering the nonlinearity of beamforming and the constraints of existing Kalman-filtering based beam tracking schemes,we propose a novel Cubature Kalman Filter(CKF)framework tracking the channel state information(CSI)to manage the challenge of highspeed channel variation in single-user moving scene for OTFS systems.Aiming for low complexity for mobile settings,this paper trains only one beam pair to track a path to maintain the reliable communication link in the analog beamforming architecture.Simulation results show that our proposed method has better tracking performance to improve the accuracy of the estimated beam angle compared with prior work.展开更多
A compressive near-field millimeter wave(MMW)imaging algorithm is proposed.From the compressed sensing(CS)theory,the compressive near-field MMW imaging process can be considered to reconstruct an image from the under-...A compressive near-field millimeter wave(MMW)imaging algorithm is proposed.From the compressed sensing(CS)theory,the compressive near-field MMW imaging process can be considered to reconstruct an image from the under-sampled sparse data.The Gini index(GI)has been founded that it is the only sparsity measure that has all sparsity attributes that are called Robin Hood,Scaling,Rising Tide,Cloning,Bill Gates,and Babies.By combining the total variation(TV)operator,the GI-TV mixed regularization introduced compressive near-field MMW imaging model is proposed.In addition,the corresponding algorithm based on a primal-dual framework is also proposed.Experimental results demonstrate that the proposed GI-TV mixed regularization algorithm has superior convergence and stability performance compared with the widely used l1-TV mixed regularization algorithm.展开更多
In this paper,an integrated substrate gap waveguide(ISGW)filtering antenna is proposed at millimeter wave band,whose surface wave and spurious modes are simultaneously suppressed.A secondorder filtering response is ob...In this paper,an integrated substrate gap waveguide(ISGW)filtering antenna is proposed at millimeter wave band,whose surface wave and spurious modes are simultaneously suppressed.A secondorder filtering response is obtained through a coupling feeding scheme using one uniform impedance resonator(UIR)and two stepped-impedance resonators(SIRs).To increase the stopband width of the antenna,the spurious modes are suppressed by selecting the appropriate sizes of the ISGW unit cell.Furthermore,the ISGW is implemented to improve the radiation performance of the antenna by alleviating the propagation of surface wave.And an equivalent circuit is investigated to reveal the working principle of ISGW.To demonstrate this methodology,an ISGW filtering antenna operating at a center frequency of 25 GHz is designed,fabricated,and measured.The results show that the antenna achieves a stopband width of 1.6f0(center frequency),an out-of-band suppression level of 21 dB,and a peak realized gain of 8.5 dBi.展开更多
Agricultural and forestry biomass can be converted to biochar through pyrolysis gasification,making it a significant carbon source for soil.Applying biochar to soil is a carbon-negative process that helps combat clima...Agricultural and forestry biomass can be converted to biochar through pyrolysis gasification,making it a significant carbon source for soil.Applying biochar to soil is a carbon-negative process that helps combat climate change,sustain soil biodiversity,and regulate water cycling.However,quantifying soil carbon content conventionally is time-consuming,labor-intensive,imprecise,and expensive,making it difficult to accurately measure in-field soil carbon’s effect on storage water and nutrients.To address this challenge,this paper for the first time,reports on extensive lab tests demonstrating non-intrusive methods for sensing soil carbon and related smart biochar applications,such as differentiating between biochar types from various biomass feedstock species,monitoring soil moisture,and biochar water retention capacity using portable microwave and millimeter wave sensors,and machine learning.These methods can be scaled up by deploying the sensor in-field on a mobility platform,either ground or aerial.The paper provides details on the materials,methods,machine learning workflow,and results of our investigations.The significance of this work lays the foundation for assessing carbon-negative technology applications,such as soil carbon content accounting.We validated our quantification method using supervised machine learning algorithms by collecting real soil mixed with known biochar contents in the field.The results show that the millimeter wave sensor achieves high sensing accuracy(up to 100%)with proper classifiers selected and outperforms the microwave sensor by approximately 10%–15%accuracy in sensing soil carbon content.展开更多
To solve the problem of insufficient ability when detecting the high-speed moving target with passive millimeter wave technology, a direct-detection passive millimeter wave detecting system using the monolithic microw...To solve the problem of insufficient ability when detecting the high-speed moving target with passive millimeter wave technology, a direct-detection passive millimeter wave detecting system using the monolithic microwave integrated cir- cuit (MMIC) millimeter wave radiometer is built, and the measured data are obtained by experiment under different condi- tions. Based on feature analysis of testing signals, it points out that the peak of the first pulse and interval of two peak pulses are valid features which can reflect the motion characteristic of target. A method to calculate the moving speed of target is put forward. The calculating results indicate that the proposed method has enough accuracy and is feasible to determine the parameters of the moving target using for passive millimeter wave system.展开更多
In millimeter wave(mmWave) multiple-input multiple-output(MIMO) systems, hybrid precoding has been widely used to overcome the severe propagation loss. In order to improve the spectrum efficiency with low complexity, ...In millimeter wave(mmWave) multiple-input multiple-output(MIMO) systems, hybrid precoding has been widely used to overcome the severe propagation loss. In order to improve the spectrum efficiency with low complexity, we propose a joint hybrid precoding algorithm for single-user mmWave MIMO systems in this paper. By using the concept of equivalent channel, the proposed algorithm skillfully utilizes the idea of alternating optimization to complete the design of RF precoder and combiner. Then, the baseband precoder and combiner are computed by calculating the singular value decomposition of the equivalent channel. Simulation results demonstrate that the proposed algorithm can achieve satisfactory performance with quite low complexity. Moreover, we investigate the effects of quantization on the analog components and find that the proposed scheme is effective even with coarse quantization.展开更多
Millimeter-wave(mm Wave) communications will be used in fifth-generation(5G) mobile communication systems, but they experience severe path loss and have high sensitivity to physical objects, leading to smaller cell ra...Millimeter-wave(mm Wave) communications will be used in fifth-generation(5G) mobile communication systems, but they experience severe path loss and have high sensitivity to physical objects, leading to smaller cell radii and complicated network architectures. A coverage extension scheme using large-scale antenna arrays(LSAAs) has been suggested and theoretically proven to be cost-efficient in combination with ultradense small cell networks. To analyze and optimize the LSAA-based network deployments, a comprehensive survey of recent advances in statistical mmWave channel modeling is first presented in terms of channel parameter estimation, large-scale path loss models, and small-scale cluster models. Next, the measurement and modeling results at two 5G candidate mmWave bands(e.g., 28 GHz and 39 GHz) are reviewed and compared in several outdoor scenarios of interest, where the propagation characteristics make crucial contributions to wireless network designs. Finally, the coverage behaviors of systems employing a large number of antenna arrays are discussed, as well as some implications on future mmWave cellular network designs.展开更多
Millimeter wave(mmWave) and large-scale multiple input multiple output(MIMO) are two emerging technologies in fifth-generation wireless communication systems. The power consumption and hardware cost of radio frequency...Millimeter wave(mmWave) and large-scale multiple input multiple output(MIMO) are two emerging technologies in fifth-generation wireless communication systems. The power consumption and hardware cost of radio frequency(RF) chains increase exponentially with the bit resolution of analog-to-digital converters(ADCs) and digital-to-analog converters(DACs). One promising solution is to employ few RF chains with low-bit ADCs and DACs. In this paper, we consider mmWave large-scale MIMO systems with low bits DACs and ADCs. Leveraging on the Bussgang theorem and the additive quantization noise model(AQNM), a closed-form expression of the achievable rate is derived to show the effect of the ADCs? and DACs? resolution. Moreover, an orthogonal matching pursuit(OMP) based hybrid precoding algorithm is proposed to increase the achievable rate. Our results show that the impact of DACs is more pronounced than the impact of ADCs. Furthermore, 5-bit ADCs and DACs are sufficient at the transceiver to operate without a significant performance loss.展开更多
In order to initiate the flight immediately when it reaches the top of the pedrail vehicle, technical parameters of radiometer have been designed and speedy effective signal processing method has been adopted. After a...In order to initiate the flight immediately when it reaches the top of the pedrail vehicle, technical parameters of radiometer have been designed and speedy effective signal processing method has been adopted. After analyzing the difference of signal characteristic between the main jam and the target, a method of identifying target in time domain is given. The target distinguishing rules are set up by extracting the magnitude, the slope and the width of the signal, combining with distinguishing the dimension of the target. The result of the theoretic analysis shows that the detecting scheme adopted can ensure the detector to identify and orientate the pedrail vehi cle's top armour, as well as control the detonation precisely.展开更多
A novel scheme‘user assisted cooperative relaying in beamspace massive multiple input multiple output(M-MIMO)non-orthogonal multiple access(NOMA)system’has been proposed to improve coverage area,spectrum and energy ...A novel scheme‘user assisted cooperative relaying in beamspace massive multiple input multiple output(M-MIMO)non-orthogonal multiple access(NOMA)system’has been proposed to improve coverage area,spectrum and energy efficiency for millimeter wave(mmWave)communications.A downlink system for M users,where base station(BS)is equipped with beamforming lens antenna structure having NRF radio frequency(RF)chains,has been considered.A dynamic cluster of users is formed within a beam and the intermediate users(in that cluster)between beam source and destination(user)act as relaying stations.By the use of successive interference cancellation(SIC)technique of NOMA within a cluster,the relaying stations relay the symbols with improved power to the destination.For maximizing achievable sum rate,transmit precoding and dynamic power allocation for both intra and inter beam power optimization are implemented.Simulations for performance evaluation are carried out to validate that the proposed system outperforms the conventional beamspace M-MIMO NOMA system for mmWave communications in terms of spectrum and energy efficiency.展开更多
A layout and connection optimization for static frequency divider is presented. The layout optimization provides a new circle topology transistors placement and reasonable connection structure, which reduces the paras...A layout and connection optimization for static frequency divider is presented. The layout optimization provides a new circle topology transistors placement and reasonable connection structure, which reduces the parasitic effectively and enables self-oscillation frequency enhancement. Besides, bandwidth enhancement techniques based on a center-tap capacitor in input balun design and inductive peaking in latch design are adopted to improve further high frequency performance with low power consumption. As a proof of concept, design of a divide-by-2 static frequency divider in 0.13 μm SiGe BiCMOS technology is reported. With single-ended input clock signal, the divider is measured to be operated from 40 to 90 GHz. Phase noise measurements of a 90 GHz input clock signal indicate ideal behavior with no measurable noise contribution from the divider. The divider followed by a buffer that can deliver more than-10 dBm output power, which is sufficient to drive succeeding stage. To the author's knowledge, the divider exhibits a competitive power dissipation and the highest FOM among silicon based frequency dividers that operating higher than 70 GHz.展开更多
In this paper, we investigate the loss caused by multiple humans blocking millimeter wave frequencies. We model human blockers as absorbing screens of infinite height with two knife-edges, We take a physical optics ap...In this paper, we investigate the loss caused by multiple humans blocking millimeter wave frequencies. We model human blockers as absorbing screens of infinite height with two knife-edges, We take a physical optics approach to computing the diffraction around the absorbing screens, This approach differs to the geometric optics approach described in much of the literature. The blocking model is validated by measuring the gain from multiple-human blocking configurations on an indoor link. The blocking gains predicted using Piazzi ' s numerical integration method (a physical optics method) agree well with measurements taken from approximately 2.7 dB to -50 dB. Thereofre, this model is suitable for real human blockers, The mean prediction error for the method is approximately -1.2 dB, and the standard deviation is approximately 5 dB.展开更多
Beamforming in stand-alone Millimeter-Wave(mmWave)communications results in prolonged access times and latencies due to the increased number of measurements required to determine the optimal beam directions at the Mob...Beamforming in stand-alone Millimeter-Wave(mmWave)communications results in prolonged access times and latencies due to the increased number of measurements required to determine the optimal beam directions at the Mobile Station(MS)and Base Station(BS),returning the highest received signal level.Therefore,dynamic and fast access schemes that meet the Third-Generation Partnership Project(3GPP)specifications are required here.Therefore,in this paper,a novel initial access scheme is proposed for multiple MS users by leveraging for the first time a digital compass in the access procedure.Namely,when a new MS joins the footprint of a BS,it probes the channel for beacon signaling about the BS direction,i.e.,broadcasted by a neighboring MS that completed beam association at previous time steps.Then,a digital compass is utilized to adjust the coordinates of the BS according to the location of the new MS.The proposed scheme is applied for a single and multi-user settings at various broadcasting approaches.This includes a single associated MS user that broadcasts information to a single incoming MS user,a single user that broadcasts signals to multiple incoming users,or all multiple associated users broadcast to multiple incoming users.Overall,the proposed schemes yield in notable efficiency in terms of the computational complexity,access times,power and energy consumption as compared to existing access schemes.Further,high success rates are achieved at the detriment of relatively higher cost.展开更多
基金supported in part by The National Natural Science Foundation of China(62071255,62171232,61771257)The Major Projects of the Natural Science Foundation of the Jiangsu Higher Education Institutions(20KJA510009)+3 种基金The Open Research Fund of Key Lab of Broadband Wireless Communication and Sensor Network Technology(Nanjing University of Posts and Telecommunications),Ministry of Education(JZNY201914)The open research fund of National and Local Joint Engineering Laboratory of RF Integration and Micro-Assembly Technology,Nanjing University of Posts and Telecommunications(KFJJ20170305)The Research Fund of Nanjing University of Posts and Telecommunications(NY218012)Henan province science and technology research projects High and new technology(No.182102210106).
文摘Millimeter-wave transmission combined with Orbital Angular Momentum(OAM)has the advantage of reducing the loss of beam power and increasing the system capacity.However,to fulfill this advantage,the antennas at the transmitter and receiver must be parallel and coaxial;otherwise,the accuracy of mode detection at the receiver can be seriously influenced.In this paper,we design an OAM millimeter-wave communication system for overcoming the above limitation.Specifically,the first contribution is that the power distribution between different OAM modes and the capacity of the system with different mode sets are analytically derived for performance analysis.The second contribution lies in that a novel mode selection scheme is proposed to reduce the total interference between different modes.Numerical results show that system performance is less affected by the offset when the mode set with smaller modes or larger intervals is selected.
基金supported by National Natural Science Foundation of China (No.62001135)the Joint funds for Regional Innovation and Development of the National Natural Science Foundation of China(No.U21A20449)the Beijing Natural Science Foundation Haidian Original Innovation Joint Fund (No.L232002)
文摘UAV-aided cellular networks,millimeter wave(mm-wave) communications and multi-antenna techniques are viewed as promising components of the solution for beyond-5G(B5G) and even 6G communications.By leveraging the power of stochastic geometry,this paper aims at providing an effective framework for modeling and analyzing a UAV-aided heterogeneous cellular network,where the terrestrial base stations(TBSs) and the UAV base stations(UBSs) coexist,and the UBSs are provided with mm-wave and multi-antenna techniques.By modeling the TBSs as a PPP and the UBSs as a Matern hard-core point process of type Ⅱ(MPH-Ⅱ),approximated but accurate analytical results for the average rate of the typical user of both tiers are derived through an approximation method based on the mean interference-to-signal ratio(MISR) gain.The influence of some relevant parameters is discussed in detail,and some insights into the network deployment and optimization are revealed.Numerical results show that some trade-offs are worthy of being considered,such as the antenna array size,the altitude of the UAVs and the power control factor of the UBSs.
基金supported in part by the Beijing Natural Science Foundation under Grant No.L202003the National Natural Science Foundation of China under Grant U22B2001 and 62271065the Project of China Railway Corporation under Grant N2022G048.
文摘Millimeter wave(mmWave)massive multiple-input multiple-output(MIMO)plays an important role in the fifth-generation(5G)mobile communications and beyond wireless communication systems owing to its potential of high capacity.However,channel estimation has become very challenging due to the use of massive MIMO antenna array.Fortunately,the mmWave channel has strong sparsity in the spatial angle domain,and the compressed sensing technology can be used to convert the original channel matrix into the sparse matrix of discrete angle grid.Thus the high-dimensional channel matrix estimation is transformed into a sparse recovery problem with greatly reduced computational complexity.However,the path angle in the actual scene appears randomly and is unlikely to be completely located on the quantization angle grid,thus leading to the problem of power leakage.Moreover,multiple paths with the random distribution of angles will bring about serious interpath interference and further deteriorate the performance of channel estimation.To address these off-grid issues,we propose a parallel interference cancellation assisted multi-grid matching pursuit(PIC-MGMP)algorithm in this paper.The proposed algorithm consists of three stages,including coarse estimation,refined estimation,and inter-path cyclic iterative inter-ference cancellation.More specifically,the angular resolution can be improved by locally refining the grid to reduce power leakage,while the inter-path interference is eliminated by parallel interference cancellation(PIC),and the two together improve the estimation accuracy.Simulation results show that compared with the traditional orthogonal matching pursuit(OMP)algorithm,the normalized mean square error(NMSE)of the proposed algorithm decreases by over 14dB in the case of 2 paths.
文摘In this paper,we analyze a hybrid Heterogeneous Cellular Network(HCNet)framework by deploying millimeter Wave(mmWave)small cells with coexisting traditional sub-6GHz macro cells to achieve improved coverage and high data rate.We consider randomly-deployed macro base stations throughout the network whereas mmWave Small Base Stations(SBSs)are deployed in the areas with high User Equipment(UE)density.Such user centric deployment of mmWave SBSs inevitably incurs correlation between UE and SBSs.For a realistic scenario where the UEs are distributed according to Poisson cluster process and directional beamforming with line-of-sight and non-line-of-sight transmissions is adopted for mmWave communication.By using tools from stochastic geometry,we develop an analytical framework to analyze various performance metrics in the downlink hybrid HCNets under biased received power association.For UE clustering we considered Thomas cluster process and derive expressions for the association probability,coverage probability,area spectral efficiency,and energy efficiency.We also provide Monte Carlo simulation results to validate the accuracy of the derived expressions.Furthermore,we analyze the impact of mmWave operating frequency,antenna gain,small cell biasing,and BSs density to get useful engineering insights into the performance of hybrid mmWave HCNets.Our results show that network performance is significantly improved by deploying millimeter wave SBS instead of microwave BS in hot spots.
基金supported by the National Key R&D Program of China under Grant 2021YFB1407001the National Natural Science Foundation of China (NSFC) under Grants 62001269 and 61960206006+2 种基金the State Key Laboratory of Rail Traffic Control and Safety (under Grants RCS2022K009)Beijing Jiaotong University, the Future Plan Program for Young Scholars of Shandong Universitythe EU H2020 RISE TESTBED2 project under Grant 872172
文摘A large amount of mobile data from growing high-speed train(HST)users makes intelligent HST communications enter the era of big data.The corresponding artificial intelligence(AI)based HST channel modeling becomes a trend.This paper provides AI based channel characteristic prediction and scenario classification model for millimeter wave(mmWave)HST communications.Firstly,the ray tracing method verified by measurement data is applied to reconstruct four representative HST scenarios.By setting the positions of transmitter(Tx),receiver(Rx),and other parameters,the multi-scenarios wireless channel big data is acquired.Then,based on the obtained channel database,radial basis function neural network(RBF-NN)and back propagation neural network(BP-NN)are trained for channel characteristic prediction and scenario classification.Finally,the channel characteristic prediction and scenario classification capabilities of the network are evaluated by calculating the root mean square error(RMSE).The results show that RBF-NN can generally achieve better performance than BP-NN,and is more applicable to prediction of HST scenarios.
基金supported by National Natural Science Foundation of China(No.62101298)Collaborative Education Project between Industry and Academia,China(22050609312501)。
文摘60 GHz millimeter wave(mmWave)system provides extremely high time resolution and multipath components(MPC)separation and has great potential to achieve high precision in the indoor positioning.However,the ranging data is often contaminated by non-line-of-sight(NLOS)transmission.First,six features of 60GHz mm Wave signal under LOS and NLOS conditions are evaluated.Next,a classifier constructed by random forest(RF)algorithm is used to identify line-of-sight(LOS)or NLOS channel.The identification mechanism has excellent generalization performance and the classification accuracy is over 97%.Finally,based on the identification results,a residual weighted least squares positioning method is proposed.All ranging information including that under NLOS channels is fully utilized,positioning failure caused by insufficient LOS links can be avoided.Compared with the conventional least squares approach,the positioning error of the proposed algorithm is reduced by 49%.
文摘In this paper,a Millimeter wave(mmWave)beam tracking problem is studied in orthogonal time frequency space(OTFS)systems.Considering the nonlinearity of beamforming and the constraints of existing Kalman-filtering based beam tracking schemes,we propose a novel Cubature Kalman Filter(CKF)framework tracking the channel state information(CSI)to manage the challenge of highspeed channel variation in single-user moving scene for OTFS systems.Aiming for low complexity for mobile settings,this paper trains only one beam pair to track a path to maintain the reliable communication link in the analog beamforming architecture.Simulation results show that our proposed method has better tracking performance to improve the accuracy of the estimated beam angle compared with prior work.
基金supported in part by the National Natural Science Foundation of China under Grants No.62027803,No.61601096,No.61971111,No.61801089,and No.61701095in part by the Science and Technology Program under Grants No.8091C24,No.80904020405,No.2021JCJQJJ0949,and No.2022JCJQJJ0784in part by Industrial Technology Development Program under Grant No.2020110C041.
文摘A compressive near-field millimeter wave(MMW)imaging algorithm is proposed.From the compressed sensing(CS)theory,the compressive near-field MMW imaging process can be considered to reconstruct an image from the under-sampled sparse data.The Gini index(GI)has been founded that it is the only sparsity measure that has all sparsity attributes that are called Robin Hood,Scaling,Rising Tide,Cloning,Bill Gates,and Babies.By combining the total variation(TV)operator,the GI-TV mixed regularization introduced compressive near-field MMW imaging model is proposed.In addition,the corresponding algorithm based on a primal-dual framework is also proposed.Experimental results demonstrate that the proposed GI-TV mixed regularization algorithm has superior convergence and stability performance compared with the widely used l1-TV mixed regularization algorithm.
基金This work was supported by the National Key research and development program of China(No.2021YFB 2900401)the national natural science foundation of China(No.62361057,No.61861046)+1 种基金the key natural science foundation of Shenzhen(No.JCYJ20220818102209020)the key research and development program of Shenzhen(No.ZDSYS20210623091807023).
文摘In this paper,an integrated substrate gap waveguide(ISGW)filtering antenna is proposed at millimeter wave band,whose surface wave and spurious modes are simultaneously suppressed.A secondorder filtering response is obtained through a coupling feeding scheme using one uniform impedance resonator(UIR)and two stepped-impedance resonators(SIRs).To increase the stopband width of the antenna,the spurious modes are suppressed by selecting the appropriate sizes of the ISGW unit cell.Furthermore,the ISGW is implemented to improve the radiation performance of the antenna by alleviating the propagation of surface wave.And an equivalent circuit is investigated to reveal the working principle of ISGW.To demonstrate this methodology,an ISGW filtering antenna operating at a center frequency of 25 GHz is designed,fabricated,and measured.The results show that the antenna achieves a stopband width of 1.6f0(center frequency),an out-of-band suppression level of 21 dB,and a peak realized gain of 8.5 dBi.
基金supported by SGC project5 entitled"Mobile Biochar Production for Methane Emission Reduction and Soil Amendment".Grant Agreement#CCR20014supported in part by NSF CBET#1856112supported in part by an F3 R&D GSR Award (Farms Food Future Innovation Initiative (or F3),as funded by US Dept.of Commerce,Economic Development Administration Build Back Better Regional Challenge).
文摘Agricultural and forestry biomass can be converted to biochar through pyrolysis gasification,making it a significant carbon source for soil.Applying biochar to soil is a carbon-negative process that helps combat climate change,sustain soil biodiversity,and regulate water cycling.However,quantifying soil carbon content conventionally is time-consuming,labor-intensive,imprecise,and expensive,making it difficult to accurately measure in-field soil carbon’s effect on storage water and nutrients.To address this challenge,this paper for the first time,reports on extensive lab tests demonstrating non-intrusive methods for sensing soil carbon and related smart biochar applications,such as differentiating between biochar types from various biomass feedstock species,monitoring soil moisture,and biochar water retention capacity using portable microwave and millimeter wave sensors,and machine learning.These methods can be scaled up by deploying the sensor in-field on a mobility platform,either ground or aerial.The paper provides details on the materials,methods,machine learning workflow,and results of our investigations.The significance of this work lays the foundation for assessing carbon-negative technology applications,such as soil carbon content accounting.We validated our quantification method using supervised machine learning algorithms by collecting real soil mixed with known biochar contents in the field.The results show that the millimeter wave sensor achieves high sensing accuracy(up to 100%)with proper classifiers selected and outperforms the microwave sensor by approximately 10%–15%accuracy in sensing soil carbon content.
文摘To solve the problem of insufficient ability when detecting the high-speed moving target with passive millimeter wave technology, a direct-detection passive millimeter wave detecting system using the monolithic microwave integrated cir- cuit (MMIC) millimeter wave radiometer is built, and the measured data are obtained by experiment under different condi- tions. Based on feature analysis of testing signals, it points out that the peak of the first pulse and interval of two peak pulses are valid features which can reflect the motion characteristic of target. A method to calculate the moving speed of target is put forward. The calculating results indicate that the proposed method has enough accuracy and is feasible to determine the parameters of the moving target using for passive millimeter wave system.
基金supported by NSFC (No. 61571055)fund of SKL of MMW (No. K201815) Important National Science & Technology Specific Projects (2017ZX03001028)
文摘In millimeter wave(mmWave) multiple-input multiple-output(MIMO) systems, hybrid precoding has been widely used to overcome the severe propagation loss. In order to improve the spectrum efficiency with low complexity, we propose a joint hybrid precoding algorithm for single-user mmWave MIMO systems in this paper. By using the concept of equivalent channel, the proposed algorithm skillfully utilizes the idea of alternating optimization to complete the design of RF precoder and combiner. Then, the baseband precoder and combiner are computed by calculating the singular value decomposition of the equivalent channel. Simulation results demonstrate that the proposed algorithm can achieve satisfactory performance with quite low complexity. Moreover, we investigate the effects of quantization on the analog components and find that the proposed scheme is effective even with coarse quantization.
基金supported in part by the National Natural Science Foundation of China under Grant No.61671145the Key R&D Program of Jiangsu Province of China under Grant BE2018121
文摘Millimeter-wave(mm Wave) communications will be used in fifth-generation(5G) mobile communication systems, but they experience severe path loss and have high sensitivity to physical objects, leading to smaller cell radii and complicated network architectures. A coverage extension scheme using large-scale antenna arrays(LSAAs) has been suggested and theoretically proven to be cost-efficient in combination with ultradense small cell networks. To analyze and optimize the LSAA-based network deployments, a comprehensive survey of recent advances in statistical mmWave channel modeling is first presented in terms of channel parameter estimation, large-scale path loss models, and small-scale cluster models. Next, the measurement and modeling results at two 5G candidate mmWave bands(e.g., 28 GHz and 39 GHz) are reviewed and compared in several outdoor scenarios of interest, where the propagation characteristics make crucial contributions to wireless network designs. Finally, the coverage behaviors of systems employing a large number of antenna arrays are discussed, as well as some implications on future mmWave cellular network designs.
基金supported in part by the National Key R&D Program of China (No. 2016YFE0200900)Major Projects of Beijing Municipal Science and Technology Commission (No. Z181100003218010)+3 种基金National Natural Science Foundation of China (Nos. 61601020, 61725101 and U1834210)the Beijing Natural Science Foundation (Nos. 4182049, L171005 and L172020)the open research fund of National Mobile Communications Research Laboratory, Southeast University (No. 2018D04)Key Laboratory of Optical Communication and Networks (No. KLOCN2018002)
文摘Millimeter wave(mmWave) and large-scale multiple input multiple output(MIMO) are two emerging technologies in fifth-generation wireless communication systems. The power consumption and hardware cost of radio frequency(RF) chains increase exponentially with the bit resolution of analog-to-digital converters(ADCs) and digital-to-analog converters(DACs). One promising solution is to employ few RF chains with low-bit ADCs and DACs. In this paper, we consider mmWave large-scale MIMO systems with low bits DACs and ADCs. Leveraging on the Bussgang theorem and the additive quantization noise model(AQNM), a closed-form expression of the achievable rate is derived to show the effect of the ADCs? and DACs? resolution. Moreover, an orthogonal matching pursuit(OMP) based hybrid precoding algorithm is proposed to increase the achievable rate. Our results show that the impact of DACs is more pronounced than the impact of ADCs. Furthermore, 5-bit ADCs and DACs are sufficient at the transceiver to operate without a significant performance loss.
文摘In order to initiate the flight immediately when it reaches the top of the pedrail vehicle, technical parameters of radiometer have been designed and speedy effective signal processing method has been adopted. After analyzing the difference of signal characteristic between the main jam and the target, a method of identifying target in time domain is given. The target distinguishing rules are set up by extracting the magnitude, the slope and the width of the signal, combining with distinguishing the dimension of the target. The result of the theoretic analysis shows that the detecting scheme adopted can ensure the detector to identify and orientate the pedrail vehi cle's top armour, as well as control the detonation precisely.
文摘A novel scheme‘user assisted cooperative relaying in beamspace massive multiple input multiple output(M-MIMO)non-orthogonal multiple access(NOMA)system’has been proposed to improve coverage area,spectrum and energy efficiency for millimeter wave(mmWave)communications.A downlink system for M users,where base station(BS)is equipped with beamforming lens antenna structure having NRF radio frequency(RF)chains,has been considered.A dynamic cluster of users is formed within a beam and the intermediate users(in that cluster)between beam source and destination(user)act as relaying stations.By the use of successive interference cancellation(SIC)technique of NOMA within a cluster,the relaying stations relay the symbols with improved power to the destination.For maximizing achievable sum rate,transmit precoding and dynamic power allocation for both intra and inter beam power optimization are implemented.Simulations for performance evaluation are carried out to validate that the proposed system outperforms the conventional beamspace M-MIMO NOMA system for mmWave communications in terms of spectrum and energy efficiency.
基金supported by National Natural Science Foundation of China under Grant 61701114the National Science and Technology Major Project under Grant 2017ZX03001020the Scientific Research Foundation of Graduate School of Southeast University (Grant No. YBJJ1811)
文摘A layout and connection optimization for static frequency divider is presented. The layout optimization provides a new circle topology transistors placement and reasonable connection structure, which reduces the parasitic effectively and enables self-oscillation frequency enhancement. Besides, bandwidth enhancement techniques based on a center-tap capacitor in input balun design and inductive peaking in latch design are adopted to improve further high frequency performance with low power consumption. As a proof of concept, design of a divide-by-2 static frequency divider in 0.13 μm SiGe BiCMOS technology is reported. With single-ended input clock signal, the divider is measured to be operated from 40 to 90 GHz. Phase noise measurements of a 90 GHz input clock signal indicate ideal behavior with no measurable noise contribution from the divider. The divider followed by a buffer that can deliver more than-10 dBm output power, which is sufficient to drive succeeding stage. To the author's knowledge, the divider exhibits a competitive power dissipation and the highest FOM among silicon based frequency dividers that operating higher than 70 GHz.
文摘In this paper, we investigate the loss caused by multiple humans blocking millimeter wave frequencies. We model human blockers as absorbing screens of infinite height with two knife-edges, We take a physical optics approach to computing the diffraction around the absorbing screens, This approach differs to the geometric optics approach described in much of the literature. The blocking model is validated by measuring the gain from multiple-human blocking configurations on an indoor link. The blocking gains predicted using Piazzi ' s numerical integration method (a physical optics method) agree well with measurements taken from approximately 2.7 dB to -50 dB. Thereofre, this model is suitable for real human blockers, The mean prediction error for the method is approximately -1.2 dB, and the standard deviation is approximately 5 dB.
基金funded by the Deanship of Scientific Research at King Faisal University,grant number 1811025.
文摘Beamforming in stand-alone Millimeter-Wave(mmWave)communications results in prolonged access times and latencies due to the increased number of measurements required to determine the optimal beam directions at the Mobile Station(MS)and Base Station(BS),returning the highest received signal level.Therefore,dynamic and fast access schemes that meet the Third-Generation Partnership Project(3GPP)specifications are required here.Therefore,in this paper,a novel initial access scheme is proposed for multiple MS users by leveraging for the first time a digital compass in the access procedure.Namely,when a new MS joins the footprint of a BS,it probes the channel for beacon signaling about the BS direction,i.e.,broadcasted by a neighboring MS that completed beam association at previous time steps.Then,a digital compass is utilized to adjust the coordinates of the BS according to the location of the new MS.The proposed scheme is applied for a single and multi-user settings at various broadcasting approaches.This includes a single associated MS user that broadcasts information to a single incoming MS user,a single user that broadcasts signals to multiple incoming users,or all multiple associated users broadcast to multiple incoming users.Overall,the proposed schemes yield in notable efficiency in terms of the computational complexity,access times,power and energy consumption as compared to existing access schemes.Further,high success rates are achieved at the detriment of relatively higher cost.