Sea surface height (SSH) variability in the Mindanao Dome (MD) region is found to be one of the strong variations in the northern Pacific. It is only weaker than that in the Kuroshio Extension area, and is comparable ...Sea surface height (SSH) variability in the Mindanao Dome (MD) region is found to be one of the strong variations in the northern Pacific. It is only weaker than that in the Kuroshio Extension area, and is comparable to that in the North Pacific Subtropical Countercurrent region. Based on a 1.5-layer reduced gravity model, we analyzed SSH variations in this region and their responses to northern tropical Pacific winds. The average SSH anomaly in the region varies mainly on a seasonal scale, with significant periods of 0.5 and 1 year, ENSO time scale2-7years, and time scale in excess of 8 years. Annual and long-term variabilities are comparably stronger. These variations are essentially a response to the northern tropical Pacific winds. On seasonal and ENSO time scales, they are mainly caused by wind anomalies east of the region, which generate westward-propagating, long Rossby waves. On time scales longer than 8 years, they are mostly induced by local Ekman pumping. Long-term SSH variations in the MD region and their responses to local winds are examined and discussed for the first time .展开更多
A super El Niño event occurred in the equatorial Pacific during 2015-2016,accompanied by considerable regional eco-hydro-climatic variations within the Mindanao Dome(MD)upwelling system in the tropical western Pa...A super El Niño event occurred in the equatorial Pacific during 2015-2016,accompanied by considerable regional eco-hydro-climatic variations within the Mindanao Dome(MD)upwelling system in the tropical western Pacific.Using timeseries of various oceanic data from 2013 to 2017,the variability of eco-hydro-climatic conditions response to the 2015/2016 super El Niño in the upper 300 m of the MD region are analyzed in this paper.Results showed that during the 2015/2016 super El Niño event,the upwelling in the MD region was greatly enhanced compared to those before and after this El Niño event.Upwelling Rossby waves and the massive loss of surface water in the western Pacific were suggested to be the main reasons for this enhanced upwelling.De-creased precipitation caused by changes in large-scale air-sea interaction led to the increased surface salinities.Changes in the struc-tures of the thermohaline and nutrient distribution in deep waters contributed to the increased surface chlorophyll a,suggesting a po-sitive effect of El Niño on surface carbon storage in the MD region.Based on the above analysis,the synopsis mechanism illustrating the eco-hydro-climatic changing processes over the MD upwelling system responding to the El Niño event was proposed.It high-lights the prospect for the role played by El Niño in local eco-hydro-climatic effects,which has further profound implications for understanding the influence of the global climate changes on the ocean carbon cycle.展开更多
Outputs from a high-resolution data assimilation system,the global Hybrid Coordinate Ocean Model and Navy Coupled Ocean Data Assimilation (HYCOM+NCODA) 1/12° analysis,were analyzed for the period September 200...Outputs from a high-resolution data assimilation system,the global Hybrid Coordinate Ocean Model and Navy Coupled Ocean Data Assimilation (HYCOM+NCODA) 1/12° analysis,were analyzed for the period September 2008 to February 2012.The objectives were to evaluate the performance of the system in simulating ocean circulation in the tropical northwestern Pacific and to examine the seasonal to interannual variations of the western boundary currents.The HYCOM assimilation compares well with altimetry observations and mooring current measurements.The mean structures and standard deviations of velocities of the North Equatorial Current (NEC),Mindanao Current (MC) and Kuroshio Current (KC) also compare well with previous observations.Seasonal to interannual variations of the NEC transport volume are closely correlated with the MC transport volume,instead of that of the KC.The NEC and MC transport volumes mainly show well-defined annual cycles,with their maxima in spring and minima in fall,and are closely related to the circulation changes in the Mindanao Dome (MD) region.In seasons of transport maxima,the MD region experiences negative SSH anomalies and a cyclonic gyre anomaly,and in seasons of transport minima the situation is reversed.The sea surface NEC bifurcation latitude (NBL) in the HYCOM assimilation also agrees well with altimetry observations.In 2009,the NBL shows an annual cycle similar to previous studies,reaching its southernmost position in summer and its northernmost position in winter.In 2010 and 2011,the NBL variations are dominantly influenced by La Ni(n)a events.The dynamics responsible for the seasonal to interannual variations of the NEC-MC-KC current system are also discussed.展开更多
基金Supported by the National Natural Science Foundation of China (No.40890151)the National Basic Research Program of China (973 Program)(No.2012CB417401)
文摘Sea surface height (SSH) variability in the Mindanao Dome (MD) region is found to be one of the strong variations in the northern Pacific. It is only weaker than that in the Kuroshio Extension area, and is comparable to that in the North Pacific Subtropical Countercurrent region. Based on a 1.5-layer reduced gravity model, we analyzed SSH variations in this region and their responses to northern tropical Pacific winds. The average SSH anomaly in the region varies mainly on a seasonal scale, with significant periods of 0.5 and 1 year, ENSO time scale2-7years, and time scale in excess of 8 years. Annual and long-term variabilities are comparably stronger. These variations are essentially a response to the northern tropical Pacific winds. On seasonal and ENSO time scales, they are mainly caused by wind anomalies east of the region, which generate westward-propagating, long Rossby waves. On time scales longer than 8 years, they are mostly induced by local Ekman pumping. Long-term SSH variations in the MD region and their responses to local winds are examined and discussed for the first time .
基金supported by the Strategic Prio-rity Research Program of the Chinese Academy of Sciences(Nos.XDB42010203,XDA19060401)the Science&Te-chnology Basic Resources Investigation Program of China(No.2017FY100802)+1 种基金the Open fund for Key Laboratory of Marine Geology and Environment,Chinese Academy of Sciences(No.MGE2019KG03)Post-Doctoral Program in Qingdao in 2019(No.Y9KY161).
文摘A super El Niño event occurred in the equatorial Pacific during 2015-2016,accompanied by considerable regional eco-hydro-climatic variations within the Mindanao Dome(MD)upwelling system in the tropical western Pacific.Using timeseries of various oceanic data from 2013 to 2017,the variability of eco-hydro-climatic conditions response to the 2015/2016 super El Niño in the upper 300 m of the MD region are analyzed in this paper.Results showed that during the 2015/2016 super El Niño event,the upwelling in the MD region was greatly enhanced compared to those before and after this El Niño event.Upwelling Rossby waves and the massive loss of surface water in the western Pacific were suggested to be the main reasons for this enhanced upwelling.De-creased precipitation caused by changes in large-scale air-sea interaction led to the increased surface salinities.Changes in the struc-tures of the thermohaline and nutrient distribution in deep waters contributed to the increased surface chlorophyll a,suggesting a po-sitive effect of El Niño on surface carbon storage in the MD region.Based on the above analysis,the synopsis mechanism illustrating the eco-hydro-climatic changing processes over the MD upwelling system responding to the El Niño event was proposed.It high-lights the prospect for the role played by El Niño in local eco-hydro-climatic effects,which has further profound implications for understanding the influence of the global climate changes on the ocean carbon cycle.
基金sponsored by the China Postdoctoral Science Foundation (Grant No.2013M530331)a project of the State Strategic Program of Global Change (Grant No.2013CB956202)
文摘Outputs from a high-resolution data assimilation system,the global Hybrid Coordinate Ocean Model and Navy Coupled Ocean Data Assimilation (HYCOM+NCODA) 1/12° analysis,were analyzed for the period September 2008 to February 2012.The objectives were to evaluate the performance of the system in simulating ocean circulation in the tropical northwestern Pacific and to examine the seasonal to interannual variations of the western boundary currents.The HYCOM assimilation compares well with altimetry observations and mooring current measurements.The mean structures and standard deviations of velocities of the North Equatorial Current (NEC),Mindanao Current (MC) and Kuroshio Current (KC) also compare well with previous observations.Seasonal to interannual variations of the NEC transport volume are closely correlated with the MC transport volume,instead of that of the KC.The NEC and MC transport volumes mainly show well-defined annual cycles,with their maxima in spring and minima in fall,and are closely related to the circulation changes in the Mindanao Dome (MD) region.In seasons of transport maxima,the MD region experiences negative SSH anomalies and a cyclonic gyre anomaly,and in seasons of transport minima the situation is reversed.The sea surface NEC bifurcation latitude (NBL) in the HYCOM assimilation also agrees well with altimetry observations.In 2009,the NBL shows an annual cycle similar to previous studies,reaching its southernmost position in summer and its northernmost position in winter.In 2010 and 2011,the NBL variations are dominantly influenced by La Ni(n)a events.The dynamics responsible for the seasonal to interannual variations of the NEC-MC-KC current system are also discussed.