The mechanical characteristics of crystalline rocks are affected by the heterogeneity of the spatial distribution of minerals.In this paper,a novel three-dimensional(3D)grain-based model(GBM)based on particle flow cod...The mechanical characteristics of crystalline rocks are affected by the heterogeneity of the spatial distribution of minerals.In this paper,a novel three-dimensional(3D)grain-based model(GBM)based on particle flow code(PFC),i.e.PFC3D-GBM,is proposed.This model can accomplish the grouping of mineral grains at the 3D scale and then filling them.Then,the effect of the position distribution,geometric size,and volume composite of mineral grains on the cracking behaviour and macroscopic properties of granite are examined by conducting Brazilian splitting tests.The numerical results show that when an external load is applied to a sample,force chains will form around each contact,and the orientation distribution of the force chains is uniform,which is independent of the external load level.Furthermore,the number of high-strength force chains is proportional to the external load level,and the main orientation distribution is consistent with the external loading direction.The main orientation of the cracks is vertical to that of the high-strength force chains.The geometric size of the mineral grains controls the mechanical behaviours.As the average grain size increases,the number of transgranular contacts with higher bonding strength in the region connecting both loading points increases.The number of high-strength force chains increases,leading to an increase in the stress concentration value required for the macroscopic failure of the sample.Due to the highest bonding strength,the generation of transgranular cracks in quartz requires a higher concentrated stress value.With increasing volume composition of quartz,the number of transgranular cracks in quartz distributed in the region connecting both loading points increases,which requires many high-strength force chains.The load level rises,leading to an increase in the tensile strength of the numerical sample.展开更多
The main aim of this work is to understand the distribution of minerals by obtaining a shallow velocity structure around the Karatungk(喀拉通克) region.Data were acquired in 2009 by a denser array in deploying a tra...The main aim of this work is to understand the distribution of minerals by obtaining a shallow velocity structure around the Karatungk(喀拉通克) region.Data were acquired in 2009 by a denser array in deploying a transportable seismometer with 4.5 Hz vertical geophone.All the P-wave arrival times are picked automatically with Akaike information criterion,and then checked man-machine interactively by short-receiver geometry.The database for local active-source tomographic in-version involves 4 241 P-wave arrival time readings from 96 shots and three quarry blasts.Checker-board tests aimed at checking the reliability of the obtained velocity models are presented.The result-ing Vp distribution slices show a complicated 3-D structure beneath this area and offer a better under-standing of three well-defined mineral deposits.Near the surface we observe a series of zones with slightly high-velocity which probably reflect potential deposits.Based on features of metallic ores we attempt to delimit their distributions and stretched directions.展开更多
The bottom sediment samples were gathered during island investigation in 1994 and in the period of carrying out the natural science fund project of Fujian in 1999. The composition, distribution and assemblage characte...The bottom sediment samples were gathered during island investigation in 1994 and in the period of carrying out the natural science fund project of Fujian in 1999. The composition, distribution and assemblage characteristics of heavy minerals which granularity distributes from 0.063 to 0.125 mm in the sediment from Jiulong River estuary are studied in the paper. The results show that there are 49 kinds of heavy minerals and the average content of them is 9.38 %. The dominant and characteristic minerals are magnetite, hematite, epidote, ilmenite, limonite, hornblende, zircon, andalusite, biotite and so on. 4 mineral assemblage ⅠⅡzones (.The watercourse gateway of Jiulong River mineral zone, . The northern estuary ⅢⅣof Jiulong River mineral zone, . The southern estuary mineral zone, . The eastern estuary of Jiulong River mineral zone ), can be divided based on the heavy mineral contents and the distribution characteristics, which not only relates to the matter sources but also is controlled by hydrodynamic condition and the sedimentary environment in the Jiulong River estuary.展开更多
The clay minearals are composed of illite, chlorite, kaolinite, montmorillonite and mixed-layer minerals in the submarine sediments of the northern South China Sea. Three types of clay mineral zone can be recognized o...The clay minearals are composed of illite, chlorite, kaolinite, montmorillonite and mixed-layer minerals in the submarine sediments of the northern South China Sea. Three types of clay mineral zone can be recognized on the basis of the distributive regularity of clay minerals, submarine relief, hydrodynamic conditions and depositional characteristics in this region. Apart from the northern mainland source, kaolinites carried from the Philippines volcanic arc in the east and Malaysia in the south are also assumed to be one of the sources of the clay minerals in the deep sea. The increase of chlorites to the abyssal direction in the west of 116° E might be associated with the residual chlorites carried from the ancient Zhujiang River during the glacial period and the conversion of kaolinite into chlorite submarine volcanoes appear to be one of the sources of the increment of montmorillonite and chlorite around the Huangyan Island. From the distribution pattern of clay minerals in the whole area, it is known that the types of clay mineral assemblage in the study area are mainly controlled by climate and rock types of the source are-展开更多
In order to develop appropriate reservoir protection measures in the northern margin of the Qaidam Basin and improve its oil and gas recovery efficiency,characteristics of clay minerals from eleven clay rock samples f...In order to develop appropriate reservoir protection measures in the northern margin of the Qaidam Basin and improve its oil and gas recovery efficiency,characteristics of clay minerals from eleven clay rock samples from the northern margin of the Qaidam Basin were investigated using X-ray diffraction analysis,the Scanning Electron Microscope(SEM)and energy spectrum analysis.Clay mineral composition and distribution characteristics of the main hydrocarbon reservoirs,i.e.,from the Jurassic and Paleogene-Neogene,were explored.We analyzed the main factors which affected these attributes.The results show that the major clay minerals in the northern margin are chlorite,kaolinite,illite,smectite and illite/smectite inter-stratified minerals.Illite is the most widely spread clay mineral in this area. Chlorite is mainly found in the entire Neogene and in shallow horizons of the Paleogene.Smectite is enriched in the shallow Paleogene-Neogene.There are large amounts of kaolinite and illite/smectite inter-stratified minerals in the Jurassic.The major factors affecting the different development of clay minerals in the region are properties of parent rocks,paleoclimate and paleowater media conditions, diagenesis transformation,tectonic and terrain conditions.展开更多
To reveal the influence of mechanical activation on the performance of fly ash, the microanalysis(the energy spectroscopy, XRD and SEM), the distribution size of particle of fly ash and cement paste intensity of var...To reveal the influence of mechanical activation on the performance of fly ash, the microanalysis(the energy spectroscopy, XRD and SEM), the distribution size of particle of fly ash and cement paste intensity of various age for different grinding time were studied. The relationships of the activity and the composition of fly ash, microstructure and the distribution of particle size by mechanical activation of fly ash were obtained. The internal glass beads with activity were released by grinding fly ash for a certain time. The particle specific surface area was improved and the hydration reaction of the interface and the surface active center was increased by grinding. The granularity distributing of fly-ash trended towards optimization. The polar molecules or ions were easier to intrude into the internal cavity of the vitreous body. The active silica and alumina of fly ash were rapidly depolymerized. Each performance index of fly ash was increased before grinding for 20 min. Cement paste intensity of various age increased along with the grinding time, and the early strength increase range was big, but the later period intensity increase range hastened slightly. The internal part of vitreous of fly ash was destroyed if the fly ash continued to be ground and the activity of fly ash was reduced. It is suggested that Guozhuang's fly ash should be ground for 20 min.展开更多
Shale mechanical properties are important for shale gas production,but the magnitudes are difficult to estimate,standard size cores are hard to sample,and secondary interstice generation is inevitable.This paper propo...Shale mechanical properties are important for shale gas production,but the magnitudes are difficult to estimate,standard size cores are hard to sample,and secondary interstice generation is inevitable.This paper proposes a method for determining shale macroscale modulus,which is determined at a hierarchy of scales from the nano-to macro-scales.Microscale measurements are upscaled to estimate the corresponding magnitudes at the macroscale.A case study is conducted with Silurian shale samples,using the hierarchy scales,gridding nanoindentation,atomic force microscopy(AFM),mineral liberation analysis(MLA),X-ray diffraction(XRD),and uniaxial compression tests.The mineral compositions are analyzed using MLA and XRD,and the shale composition is described in terms of clay minerals,organic matter,and siliceous and carbonate contents.The variation in the Young’s modulus is analyzed based on the recorded indentation depth curves and modulus distributions.The nanoindentation and AFM results are upscaled to the centimeter scale through the Mori-Tanaka method.The upscaled results exhibit satisfactory fitting with the conventional uniaxial compression results,although the fitting of the upscaled AFM results is better than nanoindentation.The proposed approach can be applied to promptly and comprehensively predict the shale mechanical parameters during shale gas exploration.展开更多
China has widely distributed silver deposits,and is rich in silver resources.Although silver deposits are mainly associated with Pb-Zn deposits,a number of independent silver deposits have also been discovered in rece...China has widely distributed silver deposits,and is rich in silver resources.Although silver deposits are mainly associated with Pb-Zn deposits,a number of independent silver deposits have also been discovered in recent years.Silver deposits include different types,such as submarine volcanism and continental volcanism related type,intrusion related type,and sedimentary related type.This study summarized the metallogenic regularity of China's silver deposits systematically based mainly on the data from 490 silver deposits.It is shown that submarine volcanic sedimentary type,continental volcanic or sub-volcanic type,skarn type,hydrothermal type(including vein type and stratabound type),sedimentary metamorphic type,sedimentary type and regolith type should be regarded as the most important prediction types of silver deposit.A total of 32 silver mineralization belts and 111 silver concentration areas have been delineated.The map of "Spatial distribution of silver mineralization belts in China" and other series of maps finished in this study may provide a theoretical basis for the evaluation and prognosis of silver resources potential in China.展开更多
The Pengshan Sn-Pb-Zn polymetallic orefield is located in the Jiujiang-Ruichang region, which is a segment of the middle-lower Yangtze River metallogenic belt. The Pengshan late Yanshanian buried pluton with granitic ...The Pengshan Sn-Pb-Zn polymetallic orefield is located in the Jiujiang-Ruichang region, which is a segment of the middle-lower Yangtze River metallogenic belt. The Pengshan late Yanshanian buried pluton with granitic composition is a calc-alkaline pluton, intrusion of which is responsible for the formation of the Sn-Pb-Zn polymetallic deposit through providing thermodynamic condition and ore-forming material. The long-active basement rifts initially formed in the Jinning period and the domal structure with induced secondary order faults formed by emplacement of the pluton, such as ring-detachment fault, top-detachment fault and joint fissure, act as the passage-way for magma and ore-forming fluid and impounding structure for ore deposit. The magma to form the pluton with DI>90 is intensively differentiated. The variation of the ore-forming fluid in composition with falling in temperature caused by action of magmatic hydrothermal convection system combined with groundwater convection system attributes to mineralization of various types in the orefield. The mineralization process can be divided into six stages, i.e., greisenization, skarnization of early stage, fluorite-stanniferous silication stage, skarnization of advanced stage, quartz and cassiterite-sulfuration stage and carbonation stage. The mineral assemblages formed in different mineralization stages are different owing to temperature changing and may be overlapped in space. Malayaite is recognized from the mineral assemblage formed in the fluorite-stanniferous silication stage. The ores in the Pengshan Sn-Pb-Zn polymetallic deposit are spatially zoned with variation from As-Sn mineral assemblage of high temperature in the inner zone through Sn-Pb and Pb-Zn-Ag mineral assemblage of middle temperature in the middle zone to fluorite mineral assemblage of low temperature in the outer zone. The exchanging of Sn, Mg and Fe between biotite and hydrothermal fluid resulted from variation of physicochemical condition during evolution processes of the hydrothermal fluid and its role in mineralization are also discussed in this paper.展开更多
基金the financial support of the National Natural Science Foundation of China(Grant No.52179118)the Graduate Innovation Program of China University of Mining and Technology(Grant No.2022WLKXJ032)the Postgraduate Research and Practice Innovation Program of Jiangsu Province,China(Grant No.KYCX22_2581).
文摘The mechanical characteristics of crystalline rocks are affected by the heterogeneity of the spatial distribution of minerals.In this paper,a novel three-dimensional(3D)grain-based model(GBM)based on particle flow code(PFC),i.e.PFC3D-GBM,is proposed.This model can accomplish the grouping of mineral grains at the 3D scale and then filling them.Then,the effect of the position distribution,geometric size,and volume composite of mineral grains on the cracking behaviour and macroscopic properties of granite are examined by conducting Brazilian splitting tests.The numerical results show that when an external load is applied to a sample,force chains will form around each contact,and the orientation distribution of the force chains is uniform,which is independent of the external load level.Furthermore,the number of high-strength force chains is proportional to the external load level,and the main orientation distribution is consistent with the external loading direction.The main orientation of the cracks is vertical to that of the high-strength force chains.The geometric size of the mineral grains controls the mechanical behaviours.As the average grain size increases,the number of transgranular contacts with higher bonding strength in the region connecting both loading points increases.The number of high-strength force chains increases,leading to an increase in the stress concentration value required for the macroscopic failure of the sample.Due to the highest bonding strength,the generation of transgranular cracks in quartz requires a higher concentrated stress value.With increasing volume composition of quartz,the number of transgranular cracks in quartz distributed in the region connecting both loading points increases,which requires many high-strength force chains.The load level rises,leading to an increase in the tensile strength of the numerical sample.
基金supported by the National Natural Science Foundation of China (No. 40730317)National Basic Research Program of China (No. 2007CB411300)
文摘The main aim of this work is to understand the distribution of minerals by obtaining a shallow velocity structure around the Karatungk(喀拉通克) region.Data were acquired in 2009 by a denser array in deploying a transportable seismometer with 4.5 Hz vertical geophone.All the P-wave arrival times are picked automatically with Akaike information criterion,and then checked man-machine interactively by short-receiver geometry.The database for local active-source tomographic in-version involves 4 241 P-wave arrival time readings from 96 shots and three quarry blasts.Checker-board tests aimed at checking the reliability of the obtained velocity models are presented.The result-ing Vp distribution slices show a complicated 3-D structure beneath this area and offer a better under-standing of three well-defined mineral deposits.Near the surface we observe a series of zones with slightly high-velocity which probably reflect potential deposits.Based on features of metallic ores we attempt to delimit their distributions and stretched directions.
基金The natural science fund of Fujian ( Numbering item: D9910006 )
文摘The bottom sediment samples were gathered during island investigation in 1994 and in the period of carrying out the natural science fund project of Fujian in 1999. The composition, distribution and assemblage characteristics of heavy minerals which granularity distributes from 0.063 to 0.125 mm in the sediment from Jiulong River estuary are studied in the paper. The results show that there are 49 kinds of heavy minerals and the average content of them is 9.38 %. The dominant and characteristic minerals are magnetite, hematite, epidote, ilmenite, limonite, hornblende, zircon, andalusite, biotite and so on. 4 mineral assemblage ⅠⅡzones (.The watercourse gateway of Jiulong River mineral zone, . The northern estuary ⅢⅣof Jiulong River mineral zone, . The southern estuary mineral zone, . The eastern estuary of Jiulong River mineral zone ), can be divided based on the heavy mineral contents and the distribution characteristics, which not only relates to the matter sources but also is controlled by hydrodynamic condition and the sedimentary environment in the Jiulong River estuary.
文摘The clay minearals are composed of illite, chlorite, kaolinite, montmorillonite and mixed-layer minerals in the submarine sediments of the northern South China Sea. Three types of clay mineral zone can be recognized on the basis of the distributive regularity of clay minerals, submarine relief, hydrodynamic conditions and depositional characteristics in this region. Apart from the northern mainland source, kaolinites carried from the Philippines volcanic arc in the east and Malaysia in the south are also assumed to be one of the sources of the clay minerals in the deep sea. The increase of chlorites to the abyssal direction in the west of 116° E might be associated with the residual chlorites carried from the ancient Zhujiang River during the glacial period and the conversion of kaolinite into chlorite submarine volcanoes appear to be one of the sources of the increment of montmorillonite and chlorite around the Huangyan Island. From the distribution pattern of clay minerals in the whole area, it is known that the types of clay mineral assemblage in the study area are mainly controlled by climate and rock types of the source are-
基金provided by the National Petroleum and Gas Resources Strategic Area Selection Survey & Evaluation projects in 2005,is gratefully acknowledged.
文摘In order to develop appropriate reservoir protection measures in the northern margin of the Qaidam Basin and improve its oil and gas recovery efficiency,characteristics of clay minerals from eleven clay rock samples from the northern margin of the Qaidam Basin were investigated using X-ray diffraction analysis,the Scanning Electron Microscope(SEM)and energy spectrum analysis.Clay mineral composition and distribution characteristics of the main hydrocarbon reservoirs,i.e.,from the Jurassic and Paleogene-Neogene,were explored.We analyzed the main factors which affected these attributes.The results show that the major clay minerals in the northern margin are chlorite,kaolinite,illite,smectite and illite/smectite inter-stratified minerals.Illite is the most widely spread clay mineral in this area. Chlorite is mainly found in the entire Neogene and in shallow horizons of the Paleogene.Smectite is enriched in the shallow Paleogene-Neogene.There are large amounts of kaolinite and illite/smectite inter-stratified minerals in the Jurassic.The major factors affecting the different development of clay minerals in the region are properties of parent rocks,paleoclimate and paleowater media conditions, diagenesis transformation,tectonic and terrain conditions.
基金Funded by the National Natural Science Foundation of China(No.51574055)
文摘To reveal the influence of mechanical activation on the performance of fly ash, the microanalysis(the energy spectroscopy, XRD and SEM), the distribution size of particle of fly ash and cement paste intensity of various age for different grinding time were studied. The relationships of the activity and the composition of fly ash, microstructure and the distribution of particle size by mechanical activation of fly ash were obtained. The internal glass beads with activity were released by grinding fly ash for a certain time. The particle specific surface area was improved and the hydration reaction of the interface and the surface active center was increased by grinding. The granularity distributing of fly-ash trended towards optimization. The polar molecules or ions were easier to intrude into the internal cavity of the vitreous body. The active silica and alumina of fly ash were rapidly depolymerized. Each performance index of fly ash was increased before grinding for 20 min. Cement paste intensity of various age increased along with the grinding time, and the early strength increase range was big, but the later period intensity increase range hastened slightly. The internal part of vitreous of fly ash was destroyed if the fly ash continued to be ground and the activity of fly ash was reduced. It is suggested that Guozhuang's fly ash should be ground for 20 min.
基金supported by the National Natural Science Foundation of China(Grant No.42072194,U1910205)the Fundamental Research Funds for the Central Universities(800015Z1190,2021YJSDC02)
文摘Shale mechanical properties are important for shale gas production,but the magnitudes are difficult to estimate,standard size cores are hard to sample,and secondary interstice generation is inevitable.This paper proposes a method for determining shale macroscale modulus,which is determined at a hierarchy of scales from the nano-to macro-scales.Microscale measurements are upscaled to estimate the corresponding magnitudes at the macroscale.A case study is conducted with Silurian shale samples,using the hierarchy scales,gridding nanoindentation,atomic force microscopy(AFM),mineral liberation analysis(MLA),X-ray diffraction(XRD),and uniaxial compression tests.The mineral compositions are analyzed using MLA and XRD,and the shale composition is described in terms of clay minerals,organic matter,and siliceous and carbonate contents.The variation in the Young’s modulus is analyzed based on the recorded indentation depth curves and modulus distributions.The nanoindentation and AFM results are upscaled to the centimeter scale through the Mori-Tanaka method.The upscaled results exhibit satisfactory fitting with the conventional uniaxial compression results,although the fitting of the upscaled AFM results is better than nanoindentation.The proposed approach can be applied to promptly and comprehensively predict the shale mechanical parameters during shale gas exploration.
基金funded by the Chinese Geological Survey(Grant no.12120114039601,1212011121037,1212011220369)
文摘China has widely distributed silver deposits,and is rich in silver resources.Although silver deposits are mainly associated with Pb-Zn deposits,a number of independent silver deposits have also been discovered in recent years.Silver deposits include different types,such as submarine volcanism and continental volcanism related type,intrusion related type,and sedimentary related type.This study summarized the metallogenic regularity of China's silver deposits systematically based mainly on the data from 490 silver deposits.It is shown that submarine volcanic sedimentary type,continental volcanic or sub-volcanic type,skarn type,hydrothermal type(including vein type and stratabound type),sedimentary metamorphic type,sedimentary type and regolith type should be regarded as the most important prediction types of silver deposit.A total of 32 silver mineralization belts and 111 silver concentration areas have been delineated.The map of "Spatial distribution of silver mineralization belts in China" and other series of maps finished in this study may provide a theoretical basis for the evaluation and prognosis of silver resources potential in China.
文摘The Pengshan Sn-Pb-Zn polymetallic orefield is located in the Jiujiang-Ruichang region, which is a segment of the middle-lower Yangtze River metallogenic belt. The Pengshan late Yanshanian buried pluton with granitic composition is a calc-alkaline pluton, intrusion of which is responsible for the formation of the Sn-Pb-Zn polymetallic deposit through providing thermodynamic condition and ore-forming material. The long-active basement rifts initially formed in the Jinning period and the domal structure with induced secondary order faults formed by emplacement of the pluton, such as ring-detachment fault, top-detachment fault and joint fissure, act as the passage-way for magma and ore-forming fluid and impounding structure for ore deposit. The magma to form the pluton with DI>90 is intensively differentiated. The variation of the ore-forming fluid in composition with falling in temperature caused by action of magmatic hydrothermal convection system combined with groundwater convection system attributes to mineralization of various types in the orefield. The mineralization process can be divided into six stages, i.e., greisenization, skarnization of early stage, fluorite-stanniferous silication stage, skarnization of advanced stage, quartz and cassiterite-sulfuration stage and carbonation stage. The mineral assemblages formed in different mineralization stages are different owing to temperature changing and may be overlapped in space. Malayaite is recognized from the mineral assemblage formed in the fluorite-stanniferous silication stage. The ores in the Pengshan Sn-Pb-Zn polymetallic deposit are spatially zoned with variation from As-Sn mineral assemblage of high temperature in the inner zone through Sn-Pb and Pb-Zn-Ag mineral assemblage of middle temperature in the middle zone to fluorite mineral assemblage of low temperature in the outer zone. The exchanging of Sn, Mg and Fe between biotite and hydrothermal fluid resulted from variation of physicochemical condition during evolution processes of the hydrothermal fluid and its role in mineralization are also discussed in this paper.