期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A machine learning approach to tungsten prospectivity modelling using knowledge-driven feature extraction and model confidenc 被引量:2
1
作者 Christopher M.Yeomans Robin K.Shail +3 位作者 Stephen Grebby Vesa Nykanen Maarit Middleton Paul A.J.Lusty 《Geoscience Frontiers》 SCIE CAS CSCD 2020年第6期2067-2081,共15页
Novel mineral prospectivity modelling presented here applies knowledge-driven feature extraction to a datadriven machine learning approach for tungsten mineralisation.The method emphasises the importance of appropriat... Novel mineral prospectivity modelling presented here applies knowledge-driven feature extraction to a datadriven machine learning approach for tungsten mineralisation.The method emphasises the importance of appropriate model evaluation and develops a new Confidence Metric to generate spatially refined and robust exploration targets.The data-driven Random ForestTM algorithm is employed to model tungsten mineralisation in SW England using a range of geological,geochemical and geophysical evidence layers which include a depth to granite evidence layer.Two models are presented,one using standardised input variables and a second that implements fuzzy set theory as part of an augmented feature extraction step.The use of fuzzy data transformations mean feature extraction can incorporate some user-knowledge about the mineralisation into the model.The typically subjective approach is guided using the Receiver Operating Characteristics(ROC)curve tool where transformed data are compared to known training samples.The modelling is conducted using 34 known true positive samples with 10 sets of randomly generated true negative samples to test the random effect on the model.The two models have similar accuracy but show different spatial distributions when identifying highly prospective targets.Areal analysis shows that the fuzzy-transformed model is a better discriminator and highlights three areas of high prospectivity that were not previously known.The Confidence Metric,derived from model variance,is employed to further evaluate the models.The new metric is useful for refining exploration targets and highlighting the most robust areas for follow-up investigation.The fuzzy-transformed model is shown to contain larger areas of high model confidence compared to the model using standardised variables.Finally,legacy mining data,from drilling reports and mine descriptions,is used to further validate the fuzzy-transformed model and gauge the depth of potential deposits.Descriptions of mineralisation corroborate that the targets generated in these models could be undercover at depths of less than 300 m.In summary,the modelling workflow presented herein provides a novel integration of knowledge-driven feature extraction with data-driven machine learning modelling,while the newly derived Confidence Metric generates reliable mineral exploration targets. 展开更多
关键词 Machine learning mineral prospectivity modelling mineral exploration Random ForestTM TUNGSTEN SW England
下载PDF
Soil geochemical prospecting prediction method based on deep convolutional neural networks-Taking Daqiao Gold Deposit in Gansu Province, China as an example 被引量:1
2
作者 Yong-sheng Li Chong Peng +2 位作者 Xiang-jin Ran Lin-Fu Xue She-li Chai 《China Geology》 2022年第1期71-83,共13页
A method is proposed for the prospecting prediction of subsurface mineral deposits based on soil geochemistry data and a deep convolutional neural network model.This method uses three techniques(window offset,scaling,... A method is proposed for the prospecting prediction of subsurface mineral deposits based on soil geochemistry data and a deep convolutional neural network model.This method uses three techniques(window offset,scaling,and rotation)to enhance the number of training data for the model.A window area is used to extract the spatial distribution characteristics of soil geochemistry and measure their correspondence with the occurrence of known subsurface deposits.Prospecting prediction is achieved by matching the characteristics of the window area of an unknown area with the relationships established in the known area.This method can efficiently predict mineral prospective areas where there are few ore deposits used for generating the training dataset,meaning that the deep-learning method can be effectively used for deposit prospecting prediction.Using soil active geochemical measurement data,this method was applied in the Daqiao area,Gansu Province,for which seven favorable gold prospecting target areas were predicted.The Daqiao orogenic gold deposit of latest Jurassic and Early Jurassic age in the southern domain has more than 105 t of gold resources at an average grade of 3-4 g/t.In 2020,the project team drilled and verified the K prediction area,and found 66 m gold mineralized bodies.The new method should be applicable to prospecting prediction using conventional geochemical data in other areas. 展开更多
关键词 Soil geochemistry Spatial feature matching Gold deposit Deep learning mineral prospecting prediction model Data augmentation mineral exploration engineering Gansu Province China
下载PDF
Space-associated domain adaptation for three-dimensional mineral prospectivity modeling 被引量:1
3
作者 Yang Zheng Hao Deng +5 位作者 Jingjie Wu Ruisheng Wang Zhankun Liu Lixin Wu Xiancheng Mao Jing Chen 《International Journal of Digital Earth》 SCIE EI 2023年第1期2885-2911,共27页
Geographical information systems(GIS)are essential tools for mineral prospectivity modeling(MPM).Three-dimensional(3D)MPM is able to learn the association between geological evidence and mineralization in shallow zone... Geographical information systems(GIS)are essential tools for mineral prospectivity modeling(MPM).Three-dimensional(3D)MPM is able to learn the association between geological evidence and mineralization in shallow zones and thereby build a prospectivity model for deep zones,making it a desirable technique to target deep-seated orebodies.However,existing 3D MPM methods directly generalize the model learned in shallow zones to the deep zones without attention to model transferability caused by the different metallogenic mechanisms between the two zones.In this study,we aim to robustly transfer the prospectivity model learned from shallow zones to deep zones.We cast the 3D MPM as a domain adaptation problem,which is an important realm of transfer learning.Because the metallogenic mechanism can be closely associated with spatial locations,we specifically focus on domain adaption concerning the spatial locations that are ignored by conventional domain adaptation methods.To measure the spatial-associated domain discrepancy,we propose a novel spatial-associated maximum mean discrepancy(SAMMD),which compares the joint distributions of features and spatial locations across domains.Based on the SAMMD criterion,a deep neural network,referred to as the spatial-associated domain adaptation network,is devised to learn cross-domain but mineralization-indicative features for building prospectivity model that is transferable to deep zones.A case study of the world-class Sanshandao gold deposit,in eastern China,was carried out to validate the effectiveness of the proposed methods.The results show that compared with other leading MPM methods and other domain adaption variants,the proposed method has superior prediction accuracy and targeting efficiency,demonstrating the effectiveness and robustness of the proposed method in targeting deep-seated orebodies in areas with different metallogenic mechanisms and no labeled data. 展开更多
关键词 mineral prospectivity modeling domain adaptation spatial factor feature dissimilarity kernel learning
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部