The evolution of the microstructure and tensile rupture mechanism of laser welds in UNS N10003 alloy exposed to 700℃are investigated.Fine M_(6)C carbides precipitate around the primary eutectic M_(6)C-γcarbides in t...The evolution of the microstructure and tensile rupture mechanism of laser welds in UNS N10003 alloy exposed to 700℃are investigated.Fine M_(6)C carbides precipitate around the primary eutectic M_(6)C-γcarbides in the fusion zone after 100 h of exposure.During long-term thermal exposure,the size of the fine M_(6)C carbides increased.The eutectic M_(6)C-γcarbides in the as-welded fusion zone transformed into spherical M_(6)C carbides as the exposure time extends to 10000 h.Additionally,the spherical M_(6)C particles exhibit size coarsening with increasing exposure time.The tensile properties of the welded joints are not adversely affected by the evolution of eutectic M_(6)C-γcarbides and the coarsening of M_(6)C carbides.展开更多
The quality of straw affects N release after straw retention. As straw with high C: N ratio could result in N immobilization, additional N is needed to compensate N demand of crops. However, more and more N fertilize...The quality of straw affects N release after straw retention. As straw with high C: N ratio could result in N immobilization, additional N is needed to compensate N demand of crops. However, more and more N fertilizers have been applied to the soil to improve crop yields in China, which not only increases production cost but also reduces soil quality. Therefore, reasonable application of N fertilizer becomes a key problem after straw retention. This study aimed to assess the effects of applying maize straw with high quality alfalfa straw on mineral N content, microbial biomass and enzyme activity under controlled conditions. The effect of applying maize straw with alfalfa straw was compared with that of maize straw in combination with N fertilizer under the same C: N ratio (25:1). The laboratory incubation experiment consisted of four treatments: (1) soil with no addition (CK); (2) soil amended with maize straw (M); (3) soil amended with alfalfa straw and maize straw with an adjusted C: N ratio of 25:1 (MM); (4) soil amended with inorganic nitrogen fertilizer and maize straw with an adjusted C:N ratio of 25:1 (MF). The results showed that application of maize straw leaded to an N immobilization during the 270 d of incubation. Combined application of alfalfa and maize straw and or mineral N fertilizer alleviates the N immobilization and increase soil mineral N content. Compared to MF treatment, MM treatment prolonged N availability during the incubation. MM and MF treatments increased the soil microbial biomass carbon and nitrogen contents, and soil invertase and β-glycosidase activities. There was no difference between MM and M treatment in soil urease activity. MF treatment had significantly negative influence on soil urease activity compared with M treatment. The amount of added N significantly affected mineral N content, soil microbial biomass and enzyme activity. The mixture of alfalfa straw and maize straw sustains higher level of mineral N content, microbial biomass and enzyme activity as it had high N input compared to maize straw in combination with N fertilizer. It is concluded that alfalfa straw may be a better N source than N fertilizer in alleviating N immobilization caused by maize straw retention.展开更多
Atmospheric nitrogen deposition is at a high level in some forests of South China. The effects of addition of exogenous N and P on soil organic carbon mineralization were studied to address: (1) if the atmospheric N d...Atmospheric nitrogen deposition is at a high level in some forests of South China. The effects of addition of exogenous N and P on soil organic carbon mineralization were studied to address: (1) if the atmospheric N deposition promotes soil C storage through decreasing mineralization; (2) if the soil available P is a limitation to organic carbon mineralization. Soils (0–10 cm) was sampled from monsoon evergreen broad-leaved forest (MEBF), coniferous and broad-leaved mixed forest (CBMF), and Pinus massoniana...展开更多
Acid rain is a serious environmental problem worldwide. In this study, a pot experiment using forest soils planted with the seedlings of four woody species was performed with weekly treatments of pH 4.40, 4.00, 3.52, ...Acid rain is a serious environmental problem worldwide. In this study, a pot experiment using forest soils planted with the seedlings of four woody species was performed with weekly treatments of pH 4.40, 4.00, 3.52, and 3.05 simulated acid rain (SAR) for 42 months compared to a control of pH 5.00 lake water. The cumulative amounts of C and N mineralization in the five treated soils were determined after incubation at 25 ℃ for 65 d to examine the effects of SAR treatments. For all five treatments, cumulative CO2-C production ranged from 20.24 to 27.81 mg kg-1 dry soil, net production of available N from 17.37 to 48.95 mg kg-1 dry soil, and net production of NO-3 -N from 9.09 to 46.23 mg kg-1 dry soil. SAR treatments generally enhanced the emission of CO2-C from the soils; however, SAR with pH 3.05 inhibited the emission. SAR treatments decreased the net production of available N and NO3-N. The cumulative CH4 and N2O productions from the soils increased with increasing amount of simulated acid rain. The cumulative CO2-C production and the net production of available N of the soil under Acmena acuminatissima were significantly higher (P ≤ 0.05) than those under Schima superba and Cryptocarya concinna. The mineralization of soil organic C was related to the contents of soil organic C and N, but was not related to soil pH. However, the overall effect of acid rain on the storage of soil organic matter and the cycling of important nutrients depended on the amount of acid deposition and the types of forests.展开更多
Dynamics of soil organic matter in a cultivation chronosequence of paddy fields were studied in subtropical China.Mineralization of soil organic matter was determined by measuring CO2 evolution from soil during 20 day...Dynamics of soil organic matter in a cultivation chronosequence of paddy fields were studied in subtropical China.Mineralization of soil organic matter was determined by measuring CO2 evolution from soil during 20 days of laboratoryincubation. In the first 30 years of cultivation, soil organic C and N contents increased rapidly. After 30 years, 0-10 cmsoil contained 19.6 g kg-1 organic C and 1.62 g kg-1 total N, with the corresponding values of 18.1 g kg-1 and 1.50g kg-1 for 10-20 cm, and then remained stable even after 80 years of rice cultivation. During 20 days incubation themineralization rates of organic C and N in surface soil (0-10 cm) ranged from 2.2% to 3.3% and from 2.8% to 6.7%,respectively, of organic C and total N contents. Biologically active C size generally increased with increasing soil organicC and N contents. Soil dissolved organic C decreased after cultivation of wasteland to 10 years paddy field and thenincreased. Soil microbial biomass C increased with number of years under cultivation, while soil microbial biomass Nincreased during the first 30 years of cultivation and then stabilized. After 30 years of cultivation surface soil (0-10 cm)contained 332.8 mg kg-1 of microbial biomass C and 23.85 mg kg-1 of microbial biomass N, which were 111% and 47%higher than those in soil cultivated for 3 years. It was suggested that surface soil with 30 years of rice cultivation insubtropical China would have attained a steady state of organic C content, being about 19 g kg-1.展开更多
In order to explore the fertilizing ways and dynamic changes of soil carbon and nitrogen in the main producing areas of tobacco in Guizhou,research was conducted to study the variations of dissolved organic carbon and...In order to explore the fertilizing ways and dynamic changes of soil carbon and nitrogen in the main producing areas of tobacco in Guizhou,research was conducted to study the variations of dissolved organic carbon and nitrogen,total organic carbon and nitrogen and their ratio of tobacco-topsoil in organic fertilization pattern and conventional cultivation pattern (No fertilizer as control) by pot experiment.The results were as follows:(1) The effects of different fertilization patterns on soil dissolved organic carbon and nitrogen and total organic carbon and nitrogen were significantly different.The content of DOC,DON,TOC and TON in tobaccotopsoil was decreased with the advancing of growth period in conventional fertilization pattern.In the conventional fertilization pattern,the accumulation of DOC and TOC was increased first and then decreased,and the accumulation of DON and TON was decreased first and then increased.(2) The TOC content at the different growing stage and DOC content at the middle and later stage of tobacco were significantly improved in organic fertilization patterns.The accumulation of DON and TON in the conventional fertilization pattern was significantly higher than those in the organic fertilizer pattern and control at the rosette stage and vigorous stage.In the harvest period,the content of DOC,DON,TOC and TON of tobacco-topsoil in the conventional fertilization and organic fertilization pattern was significantly higher than those in the control.(3)The DOC/DON ratio and the TOC/TiON ratio was increased gradually with the advancing of growth period in conventional fertilization pattern,but they were increased first and then decreased in the organic fertilization pattern and CK.The DOC/DON and TOC/TON ratio of tobacco-topsoil in different fertilization patterns was showed as Y J> CK> CG at the different growing stage.The experiment results revealed that:The organic fertilization pattern may improve significantly the accumulation of DOC,DON,TOC and TON of tobacco-topsoil at the middle and later stage and the DOC/DON and TOC/TON ratio at the different growth stage.It contributed to the continuous and balanced supply of nutrients at the middle and later stage of tobacco and the soil fertility.展开更多
Determining soil N mineralization response to soil temperature and moisture changes is challenging in the field due to complicated effects from other factors. In the laboratory, N mineralization is highly dependent on...Determining soil N mineralization response to soil temperature and moisture changes is challenging in the field due to complicated effects from other factors. In the laboratory, N mineralization is highly dependent on temperature, moisture and sample size. In this study, a laboratory incubation experiment was carefully designed and conducted under controlled conditions to examine the effects of soil temperature and moisture on soil N mineralization using soil samples obtained from the Stipa krylovii grassland in Inner Mongolia, China. Five temperature(i.e. 9℃, 14℃, 22℃, 30℃ and 40℃) and five moisture levels(i.e. 20%, 40%, 60%, 80% and 100% WHC, where WHC is the soil water holding capacity) were included in a full-factorial design. During the 71-day incubation period, microbial biomass carbon(MBC), ammonium nitrogen(NH4 ^+-N) and nitrate nitrogen(NO3^--N) were measured approximately every 18 days; soil basal respiration for qCO2 index was measured once every 2 days(once a week near the end of the incubation period). The results showed that the mineral N production and net N mineralization rates were positively correlated with temperature; the strongest correlation was observed for temperatures between 30℃ and 40℃. The relationships between moisture levels and both the mineral N production and net N mineralization rates were quadratic. The interaction between soil temperature and moisture was significant on N mineralization, i.e. increasing temperatures(moisture) enhanced the sensitivity of N mineralization to moisture(temperature). Our results also showed a positive correlation between the net nitrification rate and temperature, while the correlation between the NH4 ^+-N content and temperature was insignificant. The net nitrification rate was negatively correlated with high NH4 ^+-N contents at 80%–100% WHC, suggesting an active denitrification in moist conditions. Moreover, qCO2 index was positively correlated with temperature, especially at 80% WHC. With a low net nitrification rate and high soil basal respiration rate, it was likely that the denitrification concealed the microbial gross mineralization activity; therefore, active soil N mineralization occurred in 60%–80% WHC conditions.展开更多
Nitrogen(N)supply is the most important factor affecting yield and quality of flue-cured tobacco(FCT).A field experiment and an in situ incubation method were used to study the effects of soil N mineralization in the ...Nitrogen(N)supply is the most important factor affecting yield and quality of flue-cured tobacco(FCT).A field experiment and an in situ incubation method were used to study the effects of soil N mineralization in the later stages of growth on yield and nicotine content of FCT in Fenggang and Jinsha,Guizhou Province.The yield and market value of FCT at Fenggang were much lower than those at Jinsha.However,the nicotine content of middle and upper leaves was much higher at Fenggang than at Jinsha when the same rate of fertilizer N was applied,which might be due to a higher N supply capacity at the Fenggang site.At later stages of growth(7-16 weeks after transplanting),the soil net N mineralization at Fenggang(56 kg N ha^(-1))was almost double that at Jinsha(30 kg N ha^(-1)).While soil NH_4-N and NO_3-N were almost exhausted by the plants or leached 5 weeks after transplanting,the N taken up at the later growth stages at Fenggang were mainly derived from soil N mineralization,which contributed to a high nicotine content in the upper leaves.The order of soil N contribution to N buildup in different leaves was:upper leaves>middle leaves>lower leaves.Thus,soil N mineralization at late growth stages was an important factor affecting N accumulation and therefore the nicotine content in the upper leaves.展开更多
Excessive nitrogen (N) fertilizer application to winter wheat is a common problem on the North China Plain. To determine the optimum fertilizer N rate for winter wheat production while minimizing N losses, field exper...Excessive nitrogen (N) fertilizer application to winter wheat is a common problem on the North China Plain. To determine the optimum fertilizer N rate for winter wheat production while minimizing N losses, field experiments were conducted for two growing seasons at eight sites, in Huimin County, Shandong Province, from 2001 to 2003. The optimum N rate for maximum grain yield was inversely related to the initial soil mineral N content (Nmin) in the top 90 cm of the soil profile before sowing. There was no yield response to the applied N at the three sites with high initial soil mineral N levels (average 212 kg N ha-1). The average optimum N rate was 96 kg N ha-1 for the five sites with low initial soil Nmin (average 155 kg N ha-1) before sowing. Residual nitrate N in the top 90 cm of the soil profile after harvest increased with increasing fertilizer N application rate. The apparent N losses during the wheat-growing season also increased with increasing N application rate. The average apparent N losses with the optimum N rates were less than 15 kg N ha-1, whereas the farmers' conventional N application rate resulted in losses of more than 100 kg N ha-1. Therefore, optimizing N use for winter wheat considerably reduced N losses to the environment without compromising crop yields.展开更多
Use of legume trees can improve soil quality in degraded pastures. The aim of this study was to charac- terize C and N mineralization kinetics and estimate the potentially mineralizable C and N in soil under Mimosa ca...Use of legume trees can improve soil quality in degraded pastures. The aim of this study was to charac- terize C and N mineralization kinetics and estimate the potentially mineralizable C and N in soil under Mimosa caesalpiniifolia Benth. and Acacia auriculiformis A. Cunn. ex Benth. secondary forest and pasture in red-yellow latosols in southeast Brazil. We conducted a laboratory aerobic incubation experiment using a completely ran- domized design of four replicates and four types of plant cover using a modified version of the Stanford and Smith technique (1972) to study C and N mineralization potential. Potentially mineralizable N (No) ranged from 135 to 170 mg kg-1. The predominant form of mineral N for all types of plant cover was N-NO3-. M. caesalpiniifolia was the only species that had a positive influence on N min- eralization. Neither of the legumes influenced C mineral- ization in pasture or secondary forest. The model of N mineralization corresponded to a sigmoidal curve while C mineralization corresponded to an exponential curve, revealing that the N and C mineralization processes were distinct. N mineralized by M. caesalpiniifolia (216 kg ofN ha-1) was adequate to meet the N requirement for a livestock-forest system.展开更多
Four kinds of plant materials (astragalus, azolla, rice straw and water hyacinth) were allowed to decompose for 10 years in two soils with different mineralogical characteristics in fields under upland and submerged c...Four kinds of plant materials (astragalus, azolla, rice straw and water hyacinth) were allowed to decompose for 10 years in two soils with different mineralogical characteristics in fields under upland and submerged conditions. Greater amounts of C and N from azolla were retained in soils throughout the 10-year experimental period compared to those from the other plant materials. The residual C Of all the plant materials in the two soils under upland conditions mineralized st rates corresponding to half-lives between 4.4-6.6 years,while the corresponding figures for thine under submerged conditions were between 6.5-13.1 years. Minerallization of residual organic N followed the same pattern as residual C. Compared to residual C, however, the mineralization rates of residual organic N in most cases were significantly lower and the percentages of added N regained in sons were higher. More N from plat materials was retained in the yellow-brown soil than in the red soil, but no consistent differences in the amounts of C from plant materials and in the mineralization rates of both residual C and residual organic N between the two soils could be found.展开更多
Utilization of organic nitrogen (N) is an important aspect of plant N assimilation and has potential application in sustainable agriculture. The aim of this study was to investigate the plant growth, C and N accumul...Utilization of organic nitrogen (N) is an important aspect of plant N assimilation and has potential application in sustainable agriculture. The aim of this study was to investigate the plant growth, C and N accumulation in leaves and roots of tomato seedlings in response to inorganic (NH4^+-N, NO3^-N) and organic nitrogen (Gly-N). Different forms of nitrogen (NH4^+-N, NO3^--N, Gly-N) were supplied to two tomato cultivars (Shenfen 918 and Huying 932) using a hydroponics system. The plant dry biomass, chlorophyll content, root activity, total carbon and nitrogen content in roots and leaves, and total N absorption, etc. were assayed during the cultivation. Our results showed that no significant differences in plant height, dry biomass, and total N content were found within the first 16 d among three treatments; however, significant differences in treatments on 24 d and 32 d were observed, and the order was NO3^--N 〉 Gly-N 〉 NH4^+-N. Significant differences were also observed between the two tomato cultivars. Chlorophyll contents in the two cultivars were significantly increased by the Gly-N treatment, and root activity showed a significant decrease in NHa^+-N treatment. Tomato leaf total carbon content was slightly affected by different N forms; however, total carbon in root and total nitrogen in root and leaf were promoted significantly by inorganic and organic N. Among the applied N forms, the increasing effects of the NH4^+-N treatment were larger than that of the Gly-N. In a word, different N resources resulted in different physiological effects in tomatoes. Organic nitrogen (e.g., Gly-N) can be a proper resource of plant N nutrition. Tomatoes of different genotypes had different responses under organic nitrogen (e.g., Gly-N) supplies.展开更多
A laboratory incubation experiment was conducted to elucidate the effect of chlorsulfuron herbicide on nitrogen mineralization and the ratio of microbial biomass nitrogen to nitrogen mineralization (N mic /N mi...A laboratory incubation experiment was conducted to elucidate the effect of chlorsulfuron herbicide on nitrogen mineralization and the ratio of microbial biomass nitrogen to nitrogen mineralization (N mic /N min ratio) in loamy sand soil.The herbicide was applied at four levels that were control, field rate 0\^01 (FR), 10 times of field rate 0\^1(10FR),and 100 times of field rate 1\^0 (100FR) μg/g soil. Determinations of N\|mineralization and microbial biomass\|N content were carried out 1,3,5,7,10,15,25 and 45 days after herbicide application. In comparison to untreated soil, the N\|mineralization decreased significantly in soil treated with herbicide at levels 10FR and 100FR within the first 5 days incubation. A more considerable reduction in the N mic /N min ratio was observed in the herbicide treated soil than the non\|treated control.Among the different treatment of chlorsulfuron, 100FR displayed the greatest biocidal effect followed by 10FR and FR,showing their relative toxicity in the order of 100FR>100FR>FR.The results indicated that the side effect of this herbicide on N\|mineralization is probably of little ecological significance.展开更多
[Objective]The aim was to study the effects of regulation of C/N ratio wheat straw application on tobacco nitrogen,phosphorus and potassium uptake. [Method]Effects of regulation C/N ratio wheat straw application on th...[Objective]The aim was to study the effects of regulation of C/N ratio wheat straw application on tobacco nitrogen,phosphorus and potassium uptake. [Method]Effects of regulation C/N ratio wheat straw application on the flue-cured tobacco yield,output value,nitrogen,phosphorus and potassium content and cumulative uptake of the upper,middle and bottom leaf were studied by using the field plot experiments at Banqiao town,Qujing city,Yunnan Province during the 2008-2009 summer growing seasons. [Result]The results showed that the application of wheat straw alone or after C/N regulation,could significantly increase tobacco production,potassium content,the potassium and nitrogen accumulation amount of leaf,and was more conducive to the potassium uptake of tobacco leaf with wheat straw application after C/N regulation. Compared with non-straw application,the yield of tobacco increased by 6.59%,3.58%,5.98%,8.80% with application of wheat straw alone,wheat straw and vetch,wheat straw and oilseed cake,wheat straw and urea nitrogen,the potassium content in tobacco leaf increased by 3.85%,7.76%,8.82%,11.21%,respectively,the total potassium cumulative amount of leaf increased by 10.71%,11.62%,15.32% ,21.01% and the total nitrogen cumulative amount increased by 9.76%,1.22%,8.14%,14.00%. However,the differences of tobacco leaf nitrogen content among the different treatments were not significant,the phosphorus uptake of tobacco leaf decreased. [Conclusion]application of high C/N ratio wheat straw in flue-cured tobacco production,which should be concerned not only to adjust C/N ratio by adding nitrogen,but also considering additional phosphorus application.展开更多
To study non-structural carbohydrate character-istics and nutrient utilization strategies of Pinus yunnanen-sis under continuous drought conditions,2-year-old seed-lings were planted in pots with appropriate water,lig...To study non-structural carbohydrate character-istics and nutrient utilization strategies of Pinus yunnanen-sis under continuous drought conditions,2-year-old seed-lings were planted in pots with appropriate water,light and moderate and severe drought treatments[(80±5),(65±5),(50±5),and(35±5)%of field water-holding capacity].Non-structural carbohydrates,carbon(C),nitrogen(N),and phosphorus(P)concentrations were measured in each plant component.The results show that:(1)With increasing drought,non-structural carbohydrates gradually increased in leaves,stems,and coarse roots,while gradually decreased in fine roots;(2)C concentrations of all were relatively stable under different stress levels.Phosphorous utilization of each component increased under light and moderate drought conditions,while N and P utilization efficiency of each plant component decreased under severe drought.Growth was mainly restricted by N,first decreasing and then increasing with increased drought;(3)There was a correlation between the levels of non-structural carbohydrates and C,N,and P in each component.Changes in N concentration affected the interconversion between soluble sugar and starch,which play a regulatory role in the fluctuation of the concentration of non-structural carbohydrates;and,(4)Plasticity analysis showed that P.yunnanensis seedlings responded to drought mainly by altering starch concentration,the ratio of soluble sugar to starch in leaves and stems,and further by alter-ing N and P utilization efficiencies.Overall,these results suggest that the physiological activities of all organs of P.yunnanensis seedlings are restricted under drought and that trade-offs exist between different physiological indicators and organs.Our findings are helpful in understanding non-structural carbohydrate and nutrient adaptation mechanisms under drought in P.yunnanensis seedlings.展开更多
[Objective]The aim was to reveal the spatial distribution characteristics of total nutrients in soil and provide a theoretical basis for farmland management and improvement of crop yield. [Method]GIS technique was use...[Objective]The aim was to reveal the spatial distribution characteristics of total nutrients in soil and provide a theoretical basis for farmland management and improvement of crop yield. [Method]GIS technique was used to analyze the spatial distribution characteristics of total C,total N,total P and total K for different soil layers in Liaoning Province. [Result]The results showed that the content of total C,total N,total P decrease from east to west,but the content of total K was high in north district of Liaoning Province. The content of total C,total N,total P and total K was higher in soil surface (0-20 cm) than the lower (20-40 cm). Total K varied less with soil depth,and its mean content was respectively 17.64 g/kg and 17.08 g/kg for soil surface and soil lower layer. [Conclusion]The results of the distribution of soil total nutrients in different soil layers supplied a theory basis for farmland management.展开更多
A located field experiment was carried out to study the effects of different amount of chemical fertilizer usage on rice yield,economic benefits of rice,soil carbon(C) and total nitrogen(TN) under ploughing back o...A located field experiment was carried out to study the effects of different amount of chemical fertilizer usage on rice yield,economic benefits of rice,soil carbon(C) and total nitrogen(TN) under ploughing back of Chinese milk vetch for 5consecutive years.Six treatments were included in the experiment,they are CK(unfertilized),CF(100% chemical fertilizer with the amount of N,P2O5,K2 O being150,75,120 kg/hm^2respectively),A1(22 500 kg/hm^2 Chinese milk vetch and 100%chemical fertilizer),A2(Chinese milk vetch and 80% nitrogen and potassium fertilizer and 100% phosphate fertilizer),A3(Chinese milk vetch and 60% nitrogen and potassium fertilizer and 100% phosphate fertilizer),A4(Chinese milk vetch and 40% nitrogen and potassium fertilizer and 100% phosphate fertilizer).The results were as follows:application of fertilizer could increase the yield of rice,while Chinese milk vetch combined with fertilizer application had a much more increase effect in rice yield.Under the condition of milk vetch application with 22 500 kg/hm^2,the early rice yield of the treatment A1 was significantly increased by 7.7% compared with that of CF.And the yield of treatment A3 was basically identical to or slight increase in comparison with that of CF.Decreasing amount of fertilizers cloud improve output value of rice in the case of the utilization of Chinese milk vetch.The treatment A1 increased output value of rice by 5.92% in comparison of CF,and treatment A2 was by 4.08% in the next.Treatment A4 showed much better effect in increasing soil organic carbon and total nitrogen in the paddy soil than those of treatments applying mineral fertilizer only.There was a significant reduction on soil organic carbon and TN in treatment A2 in comparison with that of CF.In general,amount of application of milk vetch with 22 500 kg/hm^2 could replace chemical fertilizer partially,it also could improve rice yield,decrease the production cost,and raise the utilization efficiency of nutrients.展开更多
The contents of the soil microbial biomass nitrogen (SMBN) in the soils sampled from the Loess Plateau of China were determined using chloroform fumigation aerobic incubation method (CFAIM), chloroform fumigation anae...The contents of the soil microbial biomass nitrogen (SMBN) in the soils sampled from the Loess Plateau of China were determined using chloroform fumigation aerobic incubation method (CFAIM), chloroform fumigation anaerobic incubation method (CFANIM) and chloroform fumigation-extraction method (CFEM).The N taken up by ryegrass on the soils was determined after a glasshouse pot experiment. The flushes of nitrogen (FN) of the soils obtained by the CFAIM and CFANIM were higher than that by the CFEM, and there were significantly positive correlations between the FN obtained by the 3 methods. The N extracted from the fumigated soils by the CFAIM, CFANIM and CFEM were significantly positively correlated with the N uptake by ryegrass. The FN obtained by the 3 methods was also closely positively correlated with the plant N uptake. The contributions of the SMBN and mineral N and mineralized N during the incubation period to plant N uptake were evaluated with the multiple regression method. The results showed that the N contained in the soil microbial biomass might play a noticeable role in the N supply of the soils to the plant.展开更多
The interaction effect of two sulfonylurea herbicides, bensulfuron methyl (B) and metsulfuron methyl(M), were tested on microbial biomass C, N, N mineralization and C/N ratio in a loamy sand soil. The herbicides we...The interaction effect of two sulfonylurea herbicides, bensulfuron methyl (B) and metsulfuron methyl(M), were tested on microbial biomass C, N, N mineralization and C/N ratio in a loamy sand soil. The herbicides were applied at various levels of: control (B0M0), 0.01 and 0.01 (B1M1), 0.01 and 0.1 (B1M2), and 0.01 and 1.0 (B1M3) μg/g soil. Determinations of soil microbial biomass C, N and N mineralization contents were carried out at 1, 3, 5, 7, 10, 15, 25 and 45 days after herbicides application. The results showed that the soil microbial biomass C (C mic ) and microbial biomass N (N mic ) decreased consistently with the increasing rates of herbicides. The results further indicated that B1M1 and B1M2 caused a significant reduction in C mic and N mic within first 10 and 7 days of incubation, respectively, as compared with the control. These reductions in C mic and N mic were also significant ( P =0.05) with B1M3 application especially within first 15 days of incubation. A significant reduction in N mineralization (N min) was observed with high doses (B1M2, B1M3) of herbicides within first 5 days of incubation, while low rate (B1M1) failed to produce any significant effect. An increase in the soil microbial biomass C:N ratio was also noted.展开更多
Relationships between carbon (C) production and nitrogen (N) mineralization were investigated in two alpine wetland soils of the Tibetan Plateau using laboratory incubation under different temperatures (5, 15, 25, and...Relationships between carbon (C) production and nitrogen (N) mineralization were investigated in two alpine wetland soils of the Tibetan Plateau using laboratory incubation under different temperatures (5, 15, 25, and 35 ℃) and water saturation (noninundation and inundation). A significant positive relationship was found between CO2 production and N mineralization under increasing temperatures from 5 to 35 ℃ with the same water saturation condition in the marsh soil (r2 > 0.49, P < 0.0001) and the peat soil (r2 > 0.38, P < 0.002), and a negative relationship with water saturation increasing at the same temperature, especially 25 and 35 ℃, in the marsh soil (r2 > 0.70, P < 0.009) and the peat soil (r2 > 0.61, P < 0.013). In conclusion, temperatures and water saturation could regulate the relationship between CO2 production and net N mineralization in the Tibetan alpine marsh and peat soils.展开更多
基金supported by the Technology Star of Shanghai Institute of Applied Physics,Chinese Academy of Sciences(No.E2551130)the Youth Innovation Promotion Association,Chinese Academy of Sciences(No.E2292202).
文摘The evolution of the microstructure and tensile rupture mechanism of laser welds in UNS N10003 alloy exposed to 700℃are investigated.Fine M_(6)C carbides precipitate around the primary eutectic M_(6)C-γcarbides in the fusion zone after 100 h of exposure.During long-term thermal exposure,the size of the fine M_(6)C carbides increased.The eutectic M_(6)C-γcarbides in the as-welded fusion zone transformed into spherical M_(6)C carbides as the exposure time extends to 10000 h.Additionally,the spherical M_(6)C particles exhibit size coarsening with increasing exposure time.The tensile properties of the welded joints are not adversely affected by the evolution of eutectic M_(6)C-γcarbides and the coarsening of M_(6)C carbides.
文摘The quality of straw affects N release after straw retention. As straw with high C: N ratio could result in N immobilization, additional N is needed to compensate N demand of crops. However, more and more N fertilizers have been applied to the soil to improve crop yields in China, which not only increases production cost but also reduces soil quality. Therefore, reasonable application of N fertilizer becomes a key problem after straw retention. This study aimed to assess the effects of applying maize straw with high quality alfalfa straw on mineral N content, microbial biomass and enzyme activity under controlled conditions. The effect of applying maize straw with alfalfa straw was compared with that of maize straw in combination with N fertilizer under the same C: N ratio (25:1). The laboratory incubation experiment consisted of four treatments: (1) soil with no addition (CK); (2) soil amended with maize straw (M); (3) soil amended with alfalfa straw and maize straw with an adjusted C: N ratio of 25:1 (MM); (4) soil amended with inorganic nitrogen fertilizer and maize straw with an adjusted C:N ratio of 25:1 (MF). The results showed that application of maize straw leaded to an N immobilization during the 270 d of incubation. Combined application of alfalfa and maize straw and or mineral N fertilizer alleviates the N immobilization and increase soil mineral N content. Compared to MF treatment, MM treatment prolonged N availability during the incubation. MM and MF treatments increased the soil microbial biomass carbon and nitrogen contents, and soil invertase and β-glycosidase activities. There was no difference between MM and M treatment in soil urease activity. MF treatment had significantly negative influence on soil urease activity compared with M treatment. The amount of added N significantly affected mineral N content, soil microbial biomass and enzyme activity. The mixture of alfalfa straw and maize straw sustains higher level of mineral N content, microbial biomass and enzyme activity as it had high N input compared to maize straw in combination with N fertilizer. It is concluded that alfalfa straw may be a better N source than N fertilizer in alleviating N immobilization caused by maize straw retention.
基金the National Natural Science Foundation of China (No. 30725006, 40730102)the Chinese Ecological Research Net
文摘Atmospheric nitrogen deposition is at a high level in some forests of South China. The effects of addition of exogenous N and P on soil organic carbon mineralization were studied to address: (1) if the atmospheric N deposition promotes soil C storage through decreasing mineralization; (2) if the soil available P is a limitation to organic carbon mineralization. Soils (0–10 cm) was sampled from monsoon evergreen broad-leaved forest (MEBF), coniferous and broad-leaved mixed forest (CBMF), and Pinus massoniana...
基金the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KSCX2-SW-120)the National Natural Science Foundation of China (No. 30470306)
文摘Acid rain is a serious environmental problem worldwide. In this study, a pot experiment using forest soils planted with the seedlings of four woody species was performed with weekly treatments of pH 4.40, 4.00, 3.52, and 3.05 simulated acid rain (SAR) for 42 months compared to a control of pH 5.00 lake water. The cumulative amounts of C and N mineralization in the five treated soils were determined after incubation at 25 ℃ for 65 d to examine the effects of SAR treatments. For all five treatments, cumulative CO2-C production ranged from 20.24 to 27.81 mg kg-1 dry soil, net production of available N from 17.37 to 48.95 mg kg-1 dry soil, and net production of NO-3 -N from 9.09 to 46.23 mg kg-1 dry soil. SAR treatments generally enhanced the emission of CO2-C from the soils; however, SAR with pH 3.05 inhibited the emission. SAR treatments decreased the net production of available N and NO3-N. The cumulative CH4 and N2O productions from the soils increased with increasing amount of simulated acid rain. The cumulative CO2-C production and the net production of available N of the soil under Acmena acuminatissima were significantly higher (P ≤ 0.05) than those under Schima superba and Cryptocarya concinna. The mineralization of soil organic C was related to the contents of soil organic C and N, but was not related to soil pH. However, the overall effect of acid rain on the storage of soil organic matter and the cycling of important nutrients depended on the amount of acid deposition and the types of forests.
基金the National Natural Science Foundation of China (No. 40471066) and the Knowledge InnovationProgram of the Chinese Academy of Sciences (No. KZCX1-SW-01-05).
文摘Dynamics of soil organic matter in a cultivation chronosequence of paddy fields were studied in subtropical China.Mineralization of soil organic matter was determined by measuring CO2 evolution from soil during 20 days of laboratoryincubation. In the first 30 years of cultivation, soil organic C and N contents increased rapidly. After 30 years, 0-10 cmsoil contained 19.6 g kg-1 organic C and 1.62 g kg-1 total N, with the corresponding values of 18.1 g kg-1 and 1.50g kg-1 for 10-20 cm, and then remained stable even after 80 years of rice cultivation. During 20 days incubation themineralization rates of organic C and N in surface soil (0-10 cm) ranged from 2.2% to 3.3% and from 2.8% to 6.7%,respectively, of organic C and total N contents. Biologically active C size generally increased with increasing soil organicC and N contents. Soil dissolved organic C decreased after cultivation of wasteland to 10 years paddy field and thenincreased. Soil microbial biomass C increased with number of years under cultivation, while soil microbial biomass Nincreased during the first 30 years of cultivation and then stabilized. After 30 years of cultivation surface soil (0-10 cm)contained 332.8 mg kg-1 of microbial biomass C and 23.85 mg kg-1 of microbial biomass N, which were 111% and 47%higher than those in soil cultivated for 3 years. It was suggested that surface soil with 30 years of rice cultivation insubtropical China would have attained a steady state of organic C content, being about 19 g kg-1.
基金Supported by The General Program of National Natural Science Foundation of China(312771673)Programs for Science and Technology Development of Tobacco Monopoly Bureau in Guizhou Province(20121126)~~
文摘In order to explore the fertilizing ways and dynamic changes of soil carbon and nitrogen in the main producing areas of tobacco in Guizhou,research was conducted to study the variations of dissolved organic carbon and nitrogen,total organic carbon and nitrogen and their ratio of tobacco-topsoil in organic fertilization pattern and conventional cultivation pattern (No fertilizer as control) by pot experiment.The results were as follows:(1) The effects of different fertilization patterns on soil dissolved organic carbon and nitrogen and total organic carbon and nitrogen were significantly different.The content of DOC,DON,TOC and TON in tobaccotopsoil was decreased with the advancing of growth period in conventional fertilization pattern.In the conventional fertilization pattern,the accumulation of DOC and TOC was increased first and then decreased,and the accumulation of DON and TON was decreased first and then increased.(2) The TOC content at the different growing stage and DOC content at the middle and later stage of tobacco were significantly improved in organic fertilization patterns.The accumulation of DON and TON in the conventional fertilization pattern was significantly higher than those in the organic fertilizer pattern and control at the rosette stage and vigorous stage.In the harvest period,the content of DOC,DON,TOC and TON of tobacco-topsoil in the conventional fertilization and organic fertilization pattern was significantly higher than those in the control.(3)The DOC/DON ratio and the TOC/TiON ratio was increased gradually with the advancing of growth period in conventional fertilization pattern,but they were increased first and then decreased in the organic fertilization pattern and CK.The DOC/DON and TOC/TON ratio of tobacco-topsoil in different fertilization patterns was showed as Y J> CK> CG at the different growing stage.The experiment results revealed that:The organic fertilization pattern may improve significantly the accumulation of DOC,DON,TOC and TON of tobacco-topsoil at the middle and later stage and the DOC/DON and TOC/TON ratio at the different growth stage.It contributed to the continuous and balanced supply of nutrients at the middle and later stage of tobacco and the soil fertility.
基金funded by the National Natural Science Foundation of China (31270500, 31240002)the Strategic Priority Research Program of Chinese Academy of Sciences (XDA05 050602)+1 种基金the Open Research Fund of the Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Chinese Academy of Sciencesthe support of the Duolun Restoration Ecology Research Station, which is part of the Institute of Botany, Chinese Academy of Sciences, for providing access to the sampling site
文摘Determining soil N mineralization response to soil temperature and moisture changes is challenging in the field due to complicated effects from other factors. In the laboratory, N mineralization is highly dependent on temperature, moisture and sample size. In this study, a laboratory incubation experiment was carefully designed and conducted under controlled conditions to examine the effects of soil temperature and moisture on soil N mineralization using soil samples obtained from the Stipa krylovii grassland in Inner Mongolia, China. Five temperature(i.e. 9℃, 14℃, 22℃, 30℃ and 40℃) and five moisture levels(i.e. 20%, 40%, 60%, 80% and 100% WHC, where WHC is the soil water holding capacity) were included in a full-factorial design. During the 71-day incubation period, microbial biomass carbon(MBC), ammonium nitrogen(NH4 ^+-N) and nitrate nitrogen(NO3^--N) were measured approximately every 18 days; soil basal respiration for qCO2 index was measured once every 2 days(once a week near the end of the incubation period). The results showed that the mineral N production and net N mineralization rates were positively correlated with temperature; the strongest correlation was observed for temperatures between 30℃ and 40℃. The relationships between moisture levels and both the mineral N production and net N mineralization rates were quadratic. The interaction between soil temperature and moisture was significant on N mineralization, i.e. increasing temperatures(moisture) enhanced the sensitivity of N mineralization to moisture(temperature). Our results also showed a positive correlation between the net nitrification rate and temperature, while the correlation between the NH4 ^+-N content and temperature was insignificant. The net nitrification rate was negatively correlated with high NH4 ^+-N contents at 80%–100% WHC, suggesting an active denitrification in moist conditions. Moreover, qCO2 index was positively correlated with temperature, especially at 80% WHC. With a low net nitrification rate and high soil basal respiration rate, it was likely that the denitrification concealed the microbial gross mineralization activity; therefore, active soil N mineralization occurred in 60%–80% WHC conditions.
基金the Program for Changjiang Scholars and Innovation Research Team in University(No.IRT0511)
文摘Nitrogen(N)supply is the most important factor affecting yield and quality of flue-cured tobacco(FCT).A field experiment and an in situ incubation method were used to study the effects of soil N mineralization in the later stages of growth on yield and nicotine content of FCT in Fenggang and Jinsha,Guizhou Province.The yield and market value of FCT at Fenggang were much lower than those at Jinsha.However,the nicotine content of middle and upper leaves was much higher at Fenggang than at Jinsha when the same rate of fertilizer N was applied,which might be due to a higher N supply capacity at the Fenggang site.At later stages of growth(7-16 weeks after transplanting),the soil net N mineralization at Fenggang(56 kg N ha^(-1))was almost double that at Jinsha(30 kg N ha^(-1)).While soil NH_4-N and NO_3-N were almost exhausted by the plants or leached 5 weeks after transplanting,the N taken up at the later growth stages at Fenggang were mainly derived from soil N mineralization,which contributed to a high nicotine content in the upper leaves.The order of soil N contribution to N buildup in different leaves was:upper leaves>middle leaves>lower leaves.Thus,soil N mineralization at late growth stages was an important factor affecting N accumulation and therefore the nicotine content in the upper leaves.
基金Project supported by the National Natural Science Foundation of China (Nos. 30390084 and 30270772)the Natural Science Foundation of Beijing (No. 6010001)
文摘Excessive nitrogen (N) fertilizer application to winter wheat is a common problem on the North China Plain. To determine the optimum fertilizer N rate for winter wheat production while minimizing N losses, field experiments were conducted for two growing seasons at eight sites, in Huimin County, Shandong Province, from 2001 to 2003. The optimum N rate for maximum grain yield was inversely related to the initial soil mineral N content (Nmin) in the top 90 cm of the soil profile before sowing. There was no yield response to the applied N at the three sites with high initial soil mineral N levels (average 212 kg N ha-1). The average optimum N rate was 96 kg N ha-1 for the five sites with low initial soil Nmin (average 155 kg N ha-1) before sowing. Residual nitrate N in the top 90 cm of the soil profile after harvest increased with increasing fertilizer N application rate. The apparent N losses during the wheat-growing season also increased with increasing N application rate. The average apparent N losses with the optimum N rates were less than 15 kg N ha-1, whereas the farmers' conventional N application rate resulted in losses of more than 100 kg N ha-1. Therefore, optimizing N use for winter wheat considerably reduced N losses to the environment without compromising crop yields.
文摘Use of legume trees can improve soil quality in degraded pastures. The aim of this study was to charac- terize C and N mineralization kinetics and estimate the potentially mineralizable C and N in soil under Mimosa caesalpiniifolia Benth. and Acacia auriculiformis A. Cunn. ex Benth. secondary forest and pasture in red-yellow latosols in southeast Brazil. We conducted a laboratory aerobic incubation experiment using a completely ran- domized design of four replicates and four types of plant cover using a modified version of the Stanford and Smith technique (1972) to study C and N mineralization potential. Potentially mineralizable N (No) ranged from 135 to 170 mg kg-1. The predominant form of mineral N for all types of plant cover was N-NO3-. M. caesalpiniifolia was the only species that had a positive influence on N min- eralization. Neither of the legumes influenced C mineral- ization in pasture or secondary forest. The model of N mineralization corresponded to a sigmoidal curve while C mineralization corresponded to an exponential curve, revealing that the N and C mineralization processes were distinct. N mineralized by M. caesalpiniifolia (216 kg ofN ha-1) was adequate to meet the N requirement for a livestock-forest system.
文摘Four kinds of plant materials (astragalus, azolla, rice straw and water hyacinth) were allowed to decompose for 10 years in two soils with different mineralogical characteristics in fields under upland and submerged conditions. Greater amounts of C and N from azolla were retained in soils throughout the 10-year experimental period compared to those from the other plant materials. The residual C Of all the plant materials in the two soils under upland conditions mineralized st rates corresponding to half-lives between 4.4-6.6 years,while the corresponding figures for thine under submerged conditions were between 6.5-13.1 years. Minerallization of residual organic N followed the same pattern as residual C. Compared to residual C, however, the mineralization rates of residual organic N in most cases were significantly lower and the percentages of added N regained in sons were higher. More N from plat materials was retained in the yellow-brown soil than in the red soil, but no consistent differences in the amounts of C from plant materials and in the mineralization rates of both residual C and residual organic N between the two soils could be found.
基金funded by the National High Technol-ogy Research and Development Program of China (863 Program,2006AA10Z221)China Postdoctoral Science Foundation (2005038436)+1 种基金Shanghai Leading Academic Discipline Project (B209)National Key Technologies R&D Program of China during the 11th Five-Year Plan period (2008BADA7B00 2008BADA7B01)
文摘Utilization of organic nitrogen (N) is an important aspect of plant N assimilation and has potential application in sustainable agriculture. The aim of this study was to investigate the plant growth, C and N accumulation in leaves and roots of tomato seedlings in response to inorganic (NH4^+-N, NO3^-N) and organic nitrogen (Gly-N). Different forms of nitrogen (NH4^+-N, NO3^--N, Gly-N) were supplied to two tomato cultivars (Shenfen 918 and Huying 932) using a hydroponics system. The plant dry biomass, chlorophyll content, root activity, total carbon and nitrogen content in roots and leaves, and total N absorption, etc. were assayed during the cultivation. Our results showed that no significant differences in plant height, dry biomass, and total N content were found within the first 16 d among three treatments; however, significant differences in treatments on 24 d and 32 d were observed, and the order was NO3^--N 〉 Gly-N 〉 NH4^+-N. Significant differences were also observed between the two tomato cultivars. Chlorophyll contents in the two cultivars were significantly increased by the Gly-N treatment, and root activity showed a significant decrease in NHa^+-N treatment. Tomato leaf total carbon content was slightly affected by different N forms; however, total carbon in root and total nitrogen in root and leaf were promoted significantly by inorganic and organic N. Among the applied N forms, the increasing effects of the NH4^+-N treatment were larger than that of the Gly-N. In a word, different N resources resulted in different physiological effects in tomatoes. Organic nitrogen (e.g., Gly-N) can be a proper resource of plant N nutrition. Tomatoes of different genotypes had different responses under organic nitrogen (e.g., Gly-N) supplies.
文摘A laboratory incubation experiment was conducted to elucidate the effect of chlorsulfuron herbicide on nitrogen mineralization and the ratio of microbial biomass nitrogen to nitrogen mineralization (N mic /N min ratio) in loamy sand soil.The herbicide was applied at four levels that were control, field rate 0\^01 (FR), 10 times of field rate 0\^1(10FR),and 100 times of field rate 1\^0 (100FR) μg/g soil. Determinations of N\|mineralization and microbial biomass\|N content were carried out 1,3,5,7,10,15,25 and 45 days after herbicide application. In comparison to untreated soil, the N\|mineralization decreased significantly in soil treated with herbicide at levels 10FR and 100FR within the first 5 days incubation. A more considerable reduction in the N mic /N min ratio was observed in the herbicide treated soil than the non\|treated control.Among the different treatment of chlorsulfuron, 100FR displayed the greatest biocidal effect followed by 10FR and FR,showing their relative toxicity in the order of 100FR>100FR>FR.The results indicated that the side effect of this herbicide on N\|mineralization is probably of little ecological significance.
基金Supported by National Science and Technology Support Program(2006BAD05B06-04)~~
文摘[Objective]The aim was to study the effects of regulation of C/N ratio wheat straw application on tobacco nitrogen,phosphorus and potassium uptake. [Method]Effects of regulation C/N ratio wheat straw application on the flue-cured tobacco yield,output value,nitrogen,phosphorus and potassium content and cumulative uptake of the upper,middle and bottom leaf were studied by using the field plot experiments at Banqiao town,Qujing city,Yunnan Province during the 2008-2009 summer growing seasons. [Result]The results showed that the application of wheat straw alone or after C/N regulation,could significantly increase tobacco production,potassium content,the potassium and nitrogen accumulation amount of leaf,and was more conducive to the potassium uptake of tobacco leaf with wheat straw application after C/N regulation. Compared with non-straw application,the yield of tobacco increased by 6.59%,3.58%,5.98%,8.80% with application of wheat straw alone,wheat straw and vetch,wheat straw and oilseed cake,wheat straw and urea nitrogen,the potassium content in tobacco leaf increased by 3.85%,7.76%,8.82%,11.21%,respectively,the total potassium cumulative amount of leaf increased by 10.71%,11.62%,15.32% ,21.01% and the total nitrogen cumulative amount increased by 9.76%,1.22%,8.14%,14.00%. However,the differences of tobacco leaf nitrogen content among the different treatments were not significant,the phosphorus uptake of tobacco leaf decreased. [Conclusion]application of high C/N ratio wheat straw in flue-cured tobacco production,which should be concerned not only to adjust C/N ratio by adding nitrogen,but also considering additional phosphorus application.
基金This study was supported by the National Natural Science Foundation of China(31960306).
文摘To study non-structural carbohydrate character-istics and nutrient utilization strategies of Pinus yunnanen-sis under continuous drought conditions,2-year-old seed-lings were planted in pots with appropriate water,light and moderate and severe drought treatments[(80±5),(65±5),(50±5),and(35±5)%of field water-holding capacity].Non-structural carbohydrates,carbon(C),nitrogen(N),and phosphorus(P)concentrations were measured in each plant component.The results show that:(1)With increasing drought,non-structural carbohydrates gradually increased in leaves,stems,and coarse roots,while gradually decreased in fine roots;(2)C concentrations of all were relatively stable under different stress levels.Phosphorous utilization of each component increased under light and moderate drought conditions,while N and P utilization efficiency of each plant component decreased under severe drought.Growth was mainly restricted by N,first decreasing and then increasing with increased drought;(3)There was a correlation between the levels of non-structural carbohydrates and C,N,and P in each component.Changes in N concentration affected the interconversion between soluble sugar and starch,which play a regulatory role in the fluctuation of the concentration of non-structural carbohydrates;and,(4)Plasticity analysis showed that P.yunnanensis seedlings responded to drought mainly by altering starch concentration,the ratio of soluble sugar to starch in leaves and stems,and further by alter-ing N and P utilization efficiencies.Overall,these results suggest that the physiological activities of all organs of P.yunnanensis seedlings are restricted under drought and that trade-offs exist between different physiological indicators and organs.Our findings are helpful in understanding non-structural carbohydrate and nutrient adaptation mechanisms under drought in P.yunnanensis seedlings.
基金Supported by Public Project of Science and Technology Ministry(SYKYYW200903)The Ecological Carrying Capacity and Region Ecological Security Regulation of Northeast Industrial Base(2004CB418507)~~
文摘[Objective]The aim was to reveal the spatial distribution characteristics of total nutrients in soil and provide a theoretical basis for farmland management and improvement of crop yield. [Method]GIS technique was used to analyze the spatial distribution characteristics of total C,total N,total P and total K for different soil layers in Liaoning Province. [Result]The results showed that the content of total C,total N,total P decrease from east to west,but the content of total K was high in north district of Liaoning Province. The content of total C,total N,total P and total K was higher in soil surface (0-20 cm) than the lower (20-40 cm). Total K varied less with soil depth,and its mean content was respectively 17.64 g/kg and 17.08 g/kg for soil surface and soil lower layer. [Conclusion]The results of the distribution of soil total nutrients in different soil layers supplied a theory basis for farmland management.
基金Supported by Special Fund for Agro-scientific Research in the Public Interest(201103005-08)National Science and Technology Support Program during the 12thFive-year Plan(2012BAD05B05-3)International Plant Nutrition Institute S&T Program(Hunan-16)~~
文摘A located field experiment was carried out to study the effects of different amount of chemical fertilizer usage on rice yield,economic benefits of rice,soil carbon(C) and total nitrogen(TN) under ploughing back of Chinese milk vetch for 5consecutive years.Six treatments were included in the experiment,they are CK(unfertilized),CF(100% chemical fertilizer with the amount of N,P2O5,K2 O being150,75,120 kg/hm^2respectively),A1(22 500 kg/hm^2 Chinese milk vetch and 100%chemical fertilizer),A2(Chinese milk vetch and 80% nitrogen and potassium fertilizer and 100% phosphate fertilizer),A3(Chinese milk vetch and 60% nitrogen and potassium fertilizer and 100% phosphate fertilizer),A4(Chinese milk vetch and 40% nitrogen and potassium fertilizer and 100% phosphate fertilizer).The results were as follows:application of fertilizer could increase the yield of rice,while Chinese milk vetch combined with fertilizer application had a much more increase effect in rice yield.Under the condition of milk vetch application with 22 500 kg/hm^2,the early rice yield of the treatment A1 was significantly increased by 7.7% compared with that of CF.And the yield of treatment A3 was basically identical to or slight increase in comparison with that of CF.Decreasing amount of fertilizers cloud improve output value of rice in the case of the utilization of Chinese milk vetch.The treatment A1 increased output value of rice by 5.92% in comparison of CF,and treatment A2 was by 4.08% in the next.Treatment A4 showed much better effect in increasing soil organic carbon and total nitrogen in the paddy soil than those of treatments applying mineral fertilizer only.There was a significant reduction on soil organic carbon and TN in treatment A2 in comparison with that of CF.In general,amount of application of milk vetch with 22 500 kg/hm^2 could replace chemical fertilizer partially,it also could improve rice yield,decrease the production cost,and raise the utilization efficiency of nutrients.
基金the National Natural Science Foundation of China(Nos.49890330,39770425 and 30070429) the National Key Basic Research Support Foundation of China(No.G1999011707).
文摘The contents of the soil microbial biomass nitrogen (SMBN) in the soils sampled from the Loess Plateau of China were determined using chloroform fumigation aerobic incubation method (CFAIM), chloroform fumigation anaerobic incubation method (CFANIM) and chloroform fumigation-extraction method (CFEM).The N taken up by ryegrass on the soils was determined after a glasshouse pot experiment. The flushes of nitrogen (FN) of the soils obtained by the CFAIM and CFANIM were higher than that by the CFEM, and there were significantly positive correlations between the FN obtained by the 3 methods. The N extracted from the fumigated soils by the CFAIM, CFANIM and CFEM were significantly positively correlated with the N uptake by ryegrass. The FN obtained by the 3 methods was also closely positively correlated with the plant N uptake. The contributions of the SMBN and mineral N and mineralized N during the incubation period to plant N uptake were evaluated with the multiple regression method. The results showed that the N contained in the soil microbial biomass might play a noticeable role in the N supply of the soils to the plant.
基金TheNationalKeyBasicResearchDevelopmentandPlanningofChina (No .G19990 1180 9) TheNationalNaturalScienceFoundationofChina (No .
文摘The interaction effect of two sulfonylurea herbicides, bensulfuron methyl (B) and metsulfuron methyl(M), were tested on microbial biomass C, N, N mineralization and C/N ratio in a loamy sand soil. The herbicides were applied at various levels of: control (B0M0), 0.01 and 0.01 (B1M1), 0.01 and 0.1 (B1M2), and 0.01 and 1.0 (B1M3) μg/g soil. Determinations of soil microbial biomass C, N and N mineralization contents were carried out at 1, 3, 5, 7, 10, 15, 25 and 45 days after herbicides application. The results showed that the soil microbial biomass C (C mic ) and microbial biomass N (N mic ) decreased consistently with the increasing rates of herbicides. The results further indicated that B1M1 and B1M2 caused a significant reduction in C mic and N mic within first 10 and 7 days of incubation, respectively, as compared with the control. These reductions in C mic and N mic were also significant ( P =0.05) with B1M3 application especially within first 15 days of incubation. A significant reduction in N mineralization (N min) was observed with high doses (B1M2, B1M3) of herbicides within first 5 days of incubation, while low rate (B1M1) failed to produce any significant effect. An increase in the soil microbial biomass C:N ratio was also noted.
基金supported by the National Key Basic Research Program of China (973 Program) (No.2005CB422005)the National Natural Science Foundation of China (No.30700108)the Forestry Commonweal Program of China(No.200804005).
文摘Relationships between carbon (C) production and nitrogen (N) mineralization were investigated in two alpine wetland soils of the Tibetan Plateau using laboratory incubation under different temperatures (5, 15, 25, and 35 ℃) and water saturation (noninundation and inundation). A significant positive relationship was found between CO2 production and N mineralization under increasing temperatures from 5 to 35 ℃ with the same water saturation condition in the marsh soil (r2 > 0.49, P < 0.0001) and the peat soil (r2 > 0.38, P < 0.002), and a negative relationship with water saturation increasing at the same temperature, especially 25 and 35 ℃, in the marsh soil (r2 > 0.70, P < 0.009) and the peat soil (r2 > 0.61, P < 0.013). In conclusion, temperatures and water saturation could regulate the relationship between CO2 production and net N mineralization in the Tibetan alpine marsh and peat soils.