Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which ent...Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which entails high complexity.To avoid the exact matrix inversion,a considerable number of implicit and explicit approximate matrix inversion based detection methods is proposed.By combining the advantages of both the explicit and the implicit matrix inversion,this paper introduces a new low-complexity signal detection algorithm.Firstly,the relationship between implicit and explicit techniques is analyzed.Then,an enhanced Newton iteration method is introduced to realize an approximate MMSE detection for massive MIMO uplink systems.The proposed improved Newton iteration significantly reduces the complexity of conventional Newton iteration.However,its complexity is still high for higher iterations.Thus,it is applied only for first two iterations.For subsequent iterations,we propose a novel trace iterative method(TIM)based low-complexity algorithm,which has significantly lower complexity than higher Newton iterations.Convergence guarantees of the proposed detector are also provided.Numerical simulations verify that the proposed detector exhibits significant performance enhancement over recently reported iterative detectors and achieves close-to-MMSE performance while retaining the low-complexity advantage for systems with hundreds of antennas.展开更多
Minimum mean square error(MMSE) detection algorithm can achieve nearly optimal performance when the number of antennas at the base station(BS) is large enough compared to the number of users. But the traditional MMSE ...Minimum mean square error(MMSE) detection algorithm can achieve nearly optimal performance when the number of antennas at the base station(BS) is large enough compared to the number of users. But the traditional MMSE involves complicated matrix inversion. In this paper, we propose a modified MMSE algorithm which exploits the channel characteristics occurring in massive multiple-input multipleoutput(MIMO) channels and the relaxation iteration(RI) method to avoid the matrix inversion. A proper initial solution is given to accelerate the convergence speed. In addition, we point out that the channel estimation scheme used in channel hardening-exploiting message passing(CHEMP) receiver is very appropriate for our proposed detection algorithm. Simulation results verify that the proposed algorithm can achieve very close performance of the traditional MMSE algorithm with a small number of iterations.展开更多
A low complexity Per-Antenna Power Control (PAPC) approach based on Minimum Mean Squared Error (MMSE) detection for V-BLAST is proposed in this paper. The PAPC approach is developed for minimizing the Bit Error Ra...A low complexity Per-Antenna Power Control (PAPC) approach based on Minimum Mean Squared Error (MMSE) detection for V-BLAST is proposed in this paper. The PAPC approach is developed for minimizing the Bit Error Rate (BER) averaged over all substreams when the data throughput and the total transmit power keep constant over time. Simulation results show that the Power-controlled V-BLAST (P-BLAST) outperforms the conventional V-BLAST in terms of BER performance with MMSE detector, especially in presence of high spatial correlation between antennas. However, the additional complexity for P-BLAST is not high. When MMSE detector is adopted, the P-BLAST can achieve a comparable BER performance to that of conventional V-BLAST with Maximum Likelihood (ML) detector but with low complexity.展开更多
Aiming at the optimum path excluding characteristics and the full constellation searching characteristics of the K-best detection algorithm, an improved-performance K-best detection algorithm and several reduced-compl...Aiming at the optimum path excluding characteristics and the full constellation searching characteristics of the K-best detection algorithm, an improved-performance K-best detection algorithm and several reduced-complexity K-best detection algorithms are proposed. The improved-performance K-best detection algorithm deploys minimum mean square error (MMSE) filtering of a channel matrix before QR decomposition. This algorithm can decrease the probability of excluding the optimum path and achieve better performance. The reducedcomplexity K-best detection algorithms utilize a sphere decoding method to reduce searching constellation points. Simulation results show that the improved performance K-best detection algorithm obtains a 1 dB performance gain compared to the K- best detection algorithm based on sorted QR decomposition (SQRD). Performance loss occurs when K = 4 in reduced complexity K-best detection algorithms. When K = 8, the reduced complexity K-best detection algorithms require less computational effort compared with traditional K-best detection algorithms and achieve the same performance.展开更多
A new channel estimation and data detection joint algorithm is proposed for multi-input multi-output (MIMO) - orthogonal frequency division multiplexing (OFDM) system using linear minimum mean square error (LMMSE...A new channel estimation and data detection joint algorithm is proposed for multi-input multi-output (MIMO) - orthogonal frequency division multiplexing (OFDM) system using linear minimum mean square error (LMMSE)- based space-alternating generalized expectation-maximization (SAGE) algorithm. In the proposed algorithm, every sub-frame of the MIMO-OFDM system is divided into some OFDM sub-blocks and the LMMSE-based SAGE algorithm in each sub-block is used. At the head of each sub-flame, we insert training symbols which are used in the initial estimation at the beginning. Channel estimation of the previous sub-block is applied to the initial estimation in the current sub-block by the maximum-likelihood (ML) detection to update channel estimatjon and data detection by iteration until converge. Then all the sub-blocks can be finished in turn. Simulation results show that the proposed algorithm can improve the bit error rate (BER) performance.展开更多
The numbers of multimedia applications and their users increase with each passing day.Different multi-carrier systems have been developed along with varying techniques of space-time coding to address the demand of the...The numbers of multimedia applications and their users increase with each passing day.Different multi-carrier systems have been developed along with varying techniques of space-time coding to address the demand of the future generation of network systems.In this article,a fuzzy logic empowered adaptive backpropagation neural network(FLeABPNN)algorithm is proposed for joint channel and multi-user detection(CMD).FLeABPNN has two stages.The first stage estimates the channel parameters,and the second performsmulti-user detection.The proposed approach capitalizes on a neuro-fuzzy hybrid systemthat combines the competencies of both fuzzy logic and neural networks.This study analyzes the results of using FLeABPNN based on a multiple-input andmultiple-output(MIMO)receiver with conventional partial oppositemutant particle swarmoptimization(POMPSO),total-OMPSO(TOMPSO),fuzzy logic empowered POMPSO(FL-POMPSO),and FL-TOMPSO-based MIMO receivers.The FLeABPNN-based receiver renders better results than other techniques in terms of minimum mean square error,minimum mean channel error,and bit error rate.展开更多
The detection performance is evaluated for our proposed analog multiuser receiver in Ultra-WideBand (UWB) transmitted-reference system. In the presence of dense multipath and multi-access signals,the performance analy...The detection performance is evaluated for our proposed analog multiuser receiver in Ultra-WideBand (UWB) transmitted-reference system. In the presence of dense multipath and multi-access signals,the performance analysis is difficult due to the complicated waveform of received impulse. We develop an approach to analyze the steady-state Signal-to-Interference-plus-Noise (SINR) of the detector output. The multipath-spread impulse is fitted to an exponentially decaying profile in the analysis. A closed-form expression of steady-state SINR is further deduced for the proposed Least Minimum Square (LMS) detector. The analysis is validated by simulations in Line-Of-Sight (LOS) and Non-Line-Of-Sight (NLOS) channel respectively. Based on the theoretical results,the multipath delay spread is employed to determine the optimal width of the integration window of the detector.展开更多
针对基于接收信号强度(received signal strength,RSS)测距定位框架,提出基于贝叶斯测距和迭代最小二乘定位的RSS的定位算法.在测距阶段,先利用贝叶斯概率模型处理测距过程,并采用最小均方误差(minimum mean square error,MMSE)估计距离...针对基于接收信号强度(received signal strength,RSS)测距定位框架,提出基于贝叶斯测距和迭代最小二乘定位的RSS的定位算法.在测距阶段,先利用贝叶斯概率模型处理测距过程,并采用最小均方误差(minimum mean square error,MMSE)估计距离;在定位阶段,利用迭代最小二乘(iterative least square,ILS)估计节点的位置,最后重点对其定位性能做了理论分析和对比实验.仿真结果表明,提出的MMSE+ILS定位的方案极大地提高了定位精度,并降低了计算复杂度,但运行时间略有提高.展开更多
提出V-BLAST(Vertical Bell Labs Layered Space-Time)系统的一种新的联合检测算法,先通过迫零(ZF)或最小均方误差(MMSE)算法初步检测,粗判决得到包含nT层信号的初始解向量,然后在信号解空间中找到与初始解有最小错误距离的nT个解向量,...提出V-BLAST(Vertical Bell Labs Layered Space-Time)系统的一种新的联合检测算法,先通过迫零(ZF)或最小均方误差(MMSE)算法初步检测,粗判决得到包含nT层信号的初始解向量,然后在信号解空间中找到与初始解有最小错误距离的nT个解向量,最后用最大似然(ML)算法从这nT+1个解向量中找出最优解。以QPSK调制方式为例,计算机仿真验证了在准静态平坦衰落信道中新算法的检测性能,与ZF和MMSE算法比较,该算法能明显提高系统性能,在4×4的MIMO系统中,当误码率在10-2数量级时可以获得6dB左右的增益,而且新算法比ML算法的复杂度低很多。展开更多
在采用多天线高阶QAM的MIMO通信系统中,现有基于信道分组并行检测算法虽然接近最优检测性能但以牺牲计算效率为代价.针对这一问题,本文提出一种MMSE准则下基于信道分组的并行检测算法,不但有效降低计算复杂度,而且仍保证检测性能.该算...在采用多天线高阶QAM的MIMO通信系统中,现有基于信道分组并行检测算法虽然接近最优检测性能但以牺牲计算效率为代价.针对这一问题,本文提出一种MMSE准则下基于信道分组的并行检测算法,不但有效降低计算复杂度,而且仍保证检测性能.该算法采用MMSE准则下格归约算法改进分组后条件较好子信道矩阵特性,并在消除参考信号基础上利用改进的子信道矩阵对剩余信号以非线性方式进行检测.仿真结果表明:对4@4和6@6MIMO系统,该算法检测性能达到最优,对于8@8 MIMO系统,比最优算法所需信噪比提高约1dB.复杂度分析表明:相比现有信道分组检测算法,相同检测性能下该算法在6@6 M IMO系统中复杂度降低90%以上,在8@8 MIMO系统中复杂度降低98%以上.展开更多
基金supported by National Natural Science Foundation of China(62371225,62371227)。
文摘Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which entails high complexity.To avoid the exact matrix inversion,a considerable number of implicit and explicit approximate matrix inversion based detection methods is proposed.By combining the advantages of both the explicit and the implicit matrix inversion,this paper introduces a new low-complexity signal detection algorithm.Firstly,the relationship between implicit and explicit techniques is analyzed.Then,an enhanced Newton iteration method is introduced to realize an approximate MMSE detection for massive MIMO uplink systems.The proposed improved Newton iteration significantly reduces the complexity of conventional Newton iteration.However,its complexity is still high for higher iterations.Thus,it is applied only for first two iterations.For subsequent iterations,we propose a novel trace iterative method(TIM)based low-complexity algorithm,which has significantly lower complexity than higher Newton iterations.Convergence guarantees of the proposed detector are also provided.Numerical simulations verify that the proposed detector exhibits significant performance enhancement over recently reported iterative detectors and achieves close-to-MMSE performance while retaining the low-complexity advantage for systems with hundreds of antennas.
基金supported by the National Hightech R&D Program of China(2014AA01A704)the Natural Science Foundation of China(61201135)111 Project(B08038)
文摘Minimum mean square error(MMSE) detection algorithm can achieve nearly optimal performance when the number of antennas at the base station(BS) is large enough compared to the number of users. But the traditional MMSE involves complicated matrix inversion. In this paper, we propose a modified MMSE algorithm which exploits the channel characteristics occurring in massive multiple-input multipleoutput(MIMO) channels and the relaxation iteration(RI) method to avoid the matrix inversion. A proper initial solution is given to accelerate the convergence speed. In addition, we point out that the channel estimation scheme used in channel hardening-exploiting message passing(CHEMP) receiver is very appropriate for our proposed detection algorithm. Simulation results verify that the proposed algorithm can achieve very close performance of the traditional MMSE algorithm with a small number of iterations.
基金This project was supported by the National Natural Science Foundation of China ( 60496314).
文摘A low complexity Per-Antenna Power Control (PAPC) approach based on Minimum Mean Squared Error (MMSE) detection for V-BLAST is proposed in this paper. The PAPC approach is developed for minimizing the Bit Error Rate (BER) averaged over all substreams when the data throughput and the total transmit power keep constant over time. Simulation results show that the Power-controlled V-BLAST (P-BLAST) outperforms the conventional V-BLAST in terms of BER performance with MMSE detector, especially in presence of high spatial correlation between antennas. However, the additional complexity for P-BLAST is not high. When MMSE detector is adopted, the P-BLAST can achieve a comparable BER performance to that of conventional V-BLAST with Maximum Likelihood (ML) detector but with low complexity.
基金The National High Technology Research and Develop-ment Program of China (863Program)(No.2006AA01Z264)the National Natural Science Foundation of China (No.60572072)
文摘Aiming at the optimum path excluding characteristics and the full constellation searching characteristics of the K-best detection algorithm, an improved-performance K-best detection algorithm and several reduced-complexity K-best detection algorithms are proposed. The improved-performance K-best detection algorithm deploys minimum mean square error (MMSE) filtering of a channel matrix before QR decomposition. This algorithm can decrease the probability of excluding the optimum path and achieve better performance. The reducedcomplexity K-best detection algorithms utilize a sphere decoding method to reduce searching constellation points. Simulation results show that the improved performance K-best detection algorithm obtains a 1 dB performance gain compared to the K- best detection algorithm based on sorted QR decomposition (SQRD). Performance loss occurs when K = 4 in reduced complexity K-best detection algorithms. When K = 8, the reduced complexity K-best detection algorithms require less computational effort compared with traditional K-best detection algorithms and achieve the same performance.
基金Supported by the National Natural Science Foundation of China (No. 61001105), the National Science and Technology Major Projects (No. 2011ZX03001- 007- 03) and Beijing Natural Science Foundation (No. 4102043).
文摘A new channel estimation and data detection joint algorithm is proposed for multi-input multi-output (MIMO) - orthogonal frequency division multiplexing (OFDM) system using linear minimum mean square error (LMMSE)- based space-alternating generalized expectation-maximization (SAGE) algorithm. In the proposed algorithm, every sub-frame of the MIMO-OFDM system is divided into some OFDM sub-blocks and the LMMSE-based SAGE algorithm in each sub-block is used. At the head of each sub-flame, we insert training symbols which are used in the initial estimation at the beginning. Channel estimation of the previous sub-block is applied to the initial estimation in the current sub-block by the maximum-likelihood (ML) detection to update channel estimatjon and data detection by iteration until converge. Then all the sub-blocks can be finished in turn. Simulation results show that the proposed algorithm can improve the bit error rate (BER) performance.
文摘The numbers of multimedia applications and their users increase with each passing day.Different multi-carrier systems have been developed along with varying techniques of space-time coding to address the demand of the future generation of network systems.In this article,a fuzzy logic empowered adaptive backpropagation neural network(FLeABPNN)algorithm is proposed for joint channel and multi-user detection(CMD).FLeABPNN has two stages.The first stage estimates the channel parameters,and the second performsmulti-user detection.The proposed approach capitalizes on a neuro-fuzzy hybrid systemthat combines the competencies of both fuzzy logic and neural networks.This study analyzes the results of using FLeABPNN based on a multiple-input andmultiple-output(MIMO)receiver with conventional partial oppositemutant particle swarmoptimization(POMPSO),total-OMPSO(TOMPSO),fuzzy logic empowered POMPSO(FL-POMPSO),and FL-TOMPSO-based MIMO receivers.The FLeABPNN-based receiver renders better results than other techniques in terms of minimum mean square error,minimum mean channel error,and bit error rate.
基金Supported by the Guangxi Natural Science Foundation (No.0731025, No.0731026)the Established Project by Guangxi Education Department (No.200808LX117)
文摘The detection performance is evaluated for our proposed analog multiuser receiver in Ultra-WideBand (UWB) transmitted-reference system. In the presence of dense multipath and multi-access signals,the performance analysis is difficult due to the complicated waveform of received impulse. We develop an approach to analyze the steady-state Signal-to-Interference-plus-Noise (SINR) of the detector output. The multipath-spread impulse is fitted to an exponentially decaying profile in the analysis. A closed-form expression of steady-state SINR is further deduced for the proposed Least Minimum Square (LMS) detector. The analysis is validated by simulations in Line-Of-Sight (LOS) and Non-Line-Of-Sight (NLOS) channel respectively. Based on the theoretical results,the multipath delay spread is employed to determine the optimal width of the integration window of the detector.
文摘针对基于接收信号强度(received signal strength,RSS)测距定位框架,提出基于贝叶斯测距和迭代最小二乘定位的RSS的定位算法.在测距阶段,先利用贝叶斯概率模型处理测距过程,并采用最小均方误差(minimum mean square error,MMSE)估计距离;在定位阶段,利用迭代最小二乘(iterative least square,ILS)估计节点的位置,最后重点对其定位性能做了理论分析和对比实验.仿真结果表明,提出的MMSE+ILS定位的方案极大地提高了定位精度,并降低了计算复杂度,但运行时间略有提高.
文摘提出V-BLAST(Vertical Bell Labs Layered Space-Time)系统的一种新的联合检测算法,先通过迫零(ZF)或最小均方误差(MMSE)算法初步检测,粗判决得到包含nT层信号的初始解向量,然后在信号解空间中找到与初始解有最小错误距离的nT个解向量,最后用最大似然(ML)算法从这nT+1个解向量中找出最优解。以QPSK调制方式为例,计算机仿真验证了在准静态平坦衰落信道中新算法的检测性能,与ZF和MMSE算法比较,该算法能明显提高系统性能,在4×4的MIMO系统中,当误码率在10-2数量级时可以获得6dB左右的增益,而且新算法比ML算法的复杂度低很多。
文摘在采用多天线高阶QAM的MIMO通信系统中,现有基于信道分组并行检测算法虽然接近最优检测性能但以牺牲计算效率为代价.针对这一问题,本文提出一种MMSE准则下基于信道分组的并行检测算法,不但有效降低计算复杂度,而且仍保证检测性能.该算法采用MMSE准则下格归约算法改进分组后条件较好子信道矩阵特性,并在消除参考信号基础上利用改进的子信道矩阵对剩余信号以非线性方式进行检测.仿真结果表明:对4@4和6@6MIMO系统,该算法检测性能达到最优,对于8@8 MIMO系统,比最优算法所需信噪比提高约1dB.复杂度分析表明:相比现有信道分组检测算法,相同检测性能下该算法在6@6 M IMO系统中复杂度降低90%以上,在8@8 MIMO系统中复杂度降低98%以上.