期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A Novel Rolling Bearing Vibration Impulsive Signals Detection Approach Based on Dictionary Learning 被引量:2
1
作者 Chuan Sun Hongpeng Yin +1 位作者 Yanxia Li Yi Chai 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第6期1188-1198,共11页
The localized faults of rolling bearings can be diagnosed by its vibration impulsive signals.However,it is always a challenge to extract the impulsive feature under background noise and non-stationary conditions.This ... The localized faults of rolling bearings can be diagnosed by its vibration impulsive signals.However,it is always a challenge to extract the impulsive feature under background noise and non-stationary conditions.This paper investigates impulsive signals detection of a single-point defect rolling bearing and presents a novel data-driven detection approach based on dictionary learning.To overcome the effects harmonic and noise components,we propose an autoregressive-minimum entropy deconvolution model to separate harmonic and deconvolve the effect of the transmission path.To address the shortcomings of conventional sparse representation under the changeable operation environment,we propose an approach that combines K-clustering with singular value decomposition(K-SVD)and split-Bregman to extract impulsive components precisely.Via experiments on synthetic signals and real run-to-failure signals,the excellent performance for different impulsive signals detection verifies the effectiveness and robustness of the proposed approach.Meanwhile,a comparison with the state-of-the-art methods is illustrated,which shows that the proposed approach can provide more accurate detected impulsive signals. 展开更多
关键词 Dictionary learning impulsive signals detection Kclustering with singular value decomposition(K-SVD) minimum entropy deconvolution rolling bearing signal processing
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部