Straightness error is an important parameter in measuring high-precision shafts. New generation geometrical product speeifieation(GPS) requires the measurement uncertainty characterizing the reliability of the resul...Straightness error is an important parameter in measuring high-precision shafts. New generation geometrical product speeifieation(GPS) requires the measurement uncertainty characterizing the reliability of the results should be given together when the measurement result is given. Nowadays most researches on straightness focus on error calculation and only several research projects evaluate the measurement uncertainty based on "The Guide to the Expression of Uncertainty in Measurement(GUM)". In order to compute spatial straightness error(SSE) accurately and rapidly and overcome the limitations of GUM, a quasi particle swarm optimization(QPSO) is proposed to solve the minimum zone SSE and Monte Carlo Method(MCM) is developed to estimate the measurement uncertainty. The mathematical model of minimum zone SSE is formulated. In QPSO quasi-random sequences are applied to the generation of the initial position and velocity of particles and their velocities are modified by the constriction factor approach. The flow of measurement uncertainty evaluation based on MCM is proposed, where the heart is repeatedly sampling from the probability density function(PDF) for every input quantity and evaluating the model in each case. The minimum zone SSE of a shaft measured on a Coordinate Measuring Machine(CMM) is calculated by QPSO and the measurement uncertainty is evaluated by MCM on the basis of analyzing the uncertainty contributors. The results show that the uncertainty directly influences the product judgment result. Therefore it is scientific and reasonable to consider the influence of the uncertainty in judging whether the parts are accepted or rejected, especially for those located in the uncertainty zone. The proposed method is especially suitable when the PDF of the measurand cannot adequately be approximated by a Gaussian distribution or a scaled and shifted t-distribution and the measurement model is non-linear.展开更多
采用蒙特卡洛方法(MCM)对平尺最小二乘直线度和最小条件直线度进行测量不确定度评估。通过与测量不确定度评定指南法(GUM)的评估结果进行比较发现,MCM评估出的最小二乘直线度和最小条件直线度的测量不确定度分别比GUM评估结果小0.028μm...采用蒙特卡洛方法(MCM)对平尺最小二乘直线度和最小条件直线度进行测量不确定度评估。通过与测量不确定度评定指南法(GUM)的评估结果进行比较发现,MCM评估出的最小二乘直线度和最小条件直线度的测量不确定度分别比GUM评估结果小0.028μm和0.026μm。在给定的0.05μm允差范围内,两种评估方法对直线度测量不确定度的评估均有效。统计检验采用了kolmogorov-smirnov检验法、jarque-bera检验法、normal probability plot图示法、偏度和峰度检验法。通过对两种不同定义直线度的测量模型进行统计检验分析发现,被测量分布函数与正态分布的峰度偏离是造成差异的主要原因。展开更多
基金supported by National Natural Science Foundation of China (Grant No. 51075198)Jiangsu Provincial Natural Science Foundation of China (Grant No. BK2010479)+2 种基金Innovation Research of Nanjing Institute of Technology, China (Grant No. CKJ20100008)Jiangsu Provincial Foundation of 333 Talents Engineering of ChinaJiangsu Provincial Foundation of Six Talented Peak of China
文摘Straightness error is an important parameter in measuring high-precision shafts. New generation geometrical product speeifieation(GPS) requires the measurement uncertainty characterizing the reliability of the results should be given together when the measurement result is given. Nowadays most researches on straightness focus on error calculation and only several research projects evaluate the measurement uncertainty based on "The Guide to the Expression of Uncertainty in Measurement(GUM)". In order to compute spatial straightness error(SSE) accurately and rapidly and overcome the limitations of GUM, a quasi particle swarm optimization(QPSO) is proposed to solve the minimum zone SSE and Monte Carlo Method(MCM) is developed to estimate the measurement uncertainty. The mathematical model of minimum zone SSE is formulated. In QPSO quasi-random sequences are applied to the generation of the initial position and velocity of particles and their velocities are modified by the constriction factor approach. The flow of measurement uncertainty evaluation based on MCM is proposed, where the heart is repeatedly sampling from the probability density function(PDF) for every input quantity and evaluating the model in each case. The minimum zone SSE of a shaft measured on a Coordinate Measuring Machine(CMM) is calculated by QPSO and the measurement uncertainty is evaluated by MCM on the basis of analyzing the uncertainty contributors. The results show that the uncertainty directly influences the product judgment result. Therefore it is scientific and reasonable to consider the influence of the uncertainty in judging whether the parts are accepted or rejected, especially for those located in the uncertainty zone. The proposed method is especially suitable when the PDF of the measurand cannot adequately be approximated by a Gaussian distribution or a scaled and shifted t-distribution and the measurement model is non-linear.
文摘采用蒙特卡洛方法(MCM)对平尺最小二乘直线度和最小条件直线度进行测量不确定度评估。通过与测量不确定度评定指南法(GUM)的评估结果进行比较发现,MCM评估出的最小二乘直线度和最小条件直线度的测量不确定度分别比GUM评估结果小0.028μm和0.026μm。在给定的0.05μm允差范围内,两种评估方法对直线度测量不确定度的评估均有效。统计检验采用了kolmogorov-smirnov检验法、jarque-bera检验法、normal probability plot图示法、偏度和峰度检验法。通过对两种不同定义直线度的测量模型进行统计检验分析发现,被测量分布函数与正态分布的峰度偏离是造成差异的主要原因。