Automatic roadway formation by roof cutting is a sustainable nonpillar mining method that has the potential to increase coal recovery,reduce roadway excavation and improve mining safety.In this method,roof cutting is ...Automatic roadway formation by roof cutting is a sustainable nonpillar mining method that has the potential to increase coal recovery,reduce roadway excavation and improve mining safety.In this method,roof cutting is the key process for stress relief,which significantly affects the stability of the formed roadway.This paper presents a directionally single cracking(DSC)technique for roof cutting with considerations of rock properties.The mechanism of the DSC technique was investi-gated by explicit finite element analyses.The DSC technique and roof cutting parameters were evaluated by discrete element simulation and field experiment.On this basis,the optimized DSC technique was tested in the field.The results indicate that the DSC technique could effectively control the blast-induced stress distribution and crack propagation in the roof rock,thus,achieve directionally single cracking on the roadway roof.The DsC technique for roof cutting with optimized parameters could effectively reduce the deformation and improve the stability of the formed roadway.Field engineering application verified the feasibility and effectiveness of the evaluated DSC technique for roof cutting.展开更多
A gas–solid coupling model involving coal seam deformation,gas diffusion and seepage,gas adsorption and desorption was built to study the gas transport rule under the effect of protective coal seam mining.The researc...A gas–solid coupling model involving coal seam deformation,gas diffusion and seepage,gas adsorption and desorption was built to study the gas transport rule under the effect of protective coal seam mining.The research results indicate:(1) The depressurization effect changes the stress state of an overlying coal seam and causes its permeability to increase,thus gas in the protected coal seam will be desorbed and transported under the effect of a gas pressure gradient,which will cause a decrease in gas pressure.(2) Gas pressure can be further decreased by setting out gas extraction boreholes in the overlying coal seam,which can effectively reduce the coal and gas outburst risk.The research is of important engineering significance for studying the gas transport rule in protected coal seam and providing important reference for controlling coal and gas outbursts in deep mining in China.展开更多
We studied underground pressure and its mechanism during back-gully mining in a shallow coal seam under a bedrock gully slope,by means of physical simulation,numerical modeling and field monitoring.The results show th...We studied underground pressure and its mechanism during back-gully mining in a shallow coal seam under a bedrock gully slope,by means of physical simulation,numerical modeling and field monitoring.The results show that the intensity of underground pressure is related to its relative position at the coalface.The underground pressure is intensive and the support resistance reaches a maximum when the coalface is at the bottom of the gully,whereas the underground pressure is moderate and decreases gradually when the coalface passes the gully.The mechanism of these changes is analyzed when the slope rotated in a reversed direction to the slope dip during back-gully mining and form an unstable,multilateral block hinged structure,due to slipping.The subsidence of multilateral blocks is considerable when the block fragmentation is small,resulting in enormous changes in the underground pressure.With an increase in the mass of the block body,the block displacement will be reduced in conjunction with an increased clamp effect by both the unbroken rocks and broken rocks in the goaf,resulting in a decrease of the underground pressure.展开更多
Analyzed the situations and characteristics of thin coal seam mining and its mining technologies,and introduced the mining innovation technology used by Tianchen Coal Mine of Zhaozhuang Coal Company of China.This inno...Analyzed the situations and characteristics of thin coal seam mining and its mining technologies,and introduced the mining innovation technology used by Tianchen Coal Mine of Zhaozhuang Coal Company of China.This innovation technology combined the fully mechanized mining with individual props,and the working face of mining is over length,irregular form and double units.The rotational adjusting mining technology on thin coal seam is also practiced in this new mining technology.The detail technologies,such as outlays of working face and ways,mining methods,equipments of cutting,transporting and sporting,have been introduced.So that,using the synthetic and creative mining tech- nologies,Tianchen Coal Mine solves the mining problems of thin coal seam successfully.展开更多
We determi:ned a suitable gate road layout in slice mining in an ultra-thick unstable coal seam, using theoretical anallysis and numerical calculations. Based on plasticity theory in terms of limiting equilibrium, th...We determi:ned a suitable gate road layout in slice mining in an ultra-thick unstable coal seam, using theoretical anallysis and numerical calculations. Based on plasticity theory in terms of limiting equilibrium, the width of chain pillar in the upper slice was calculated to be 18 m. The stress distribution in the chain pillar after the upper slice was mined out was described with numerical simulation. The extent of the effect of stress on the upper chain pillar on the lower solid coal was obtained on the basis of an elastic solution of a distributed force loaded on a half-plane. Three layout designs for lower gate roads were pro- posed and a stability factor was introduced to analyze the stability of the lower pillar with numerical calculation. Gate road translation was determined as the most suitable layout method, which maximizes the extraction rate on the basis of the pillar stability.展开更多
Based on the character of upward slicing backfilling mining and the condition of Gonggeyingzi coal mine in Inner Mongolia,this paper describes the studies of the strata behavior and the stress distribution in the proc...Based on the character of upward slicing backfilling mining and the condition of Gonggeyingzi coal mine in Inner Mongolia,this paper describes the studies of the strata behavior and the stress distribution in the process of backfilling mining in extra-thick coal seams.This was achieved by setting up and analyzing the elastic foundation beam model using the ABAQUS software.The results show that:(1) With the gradual mining of different slices,the roof appears to bend continuously but does not break.The vertical stress in the roof decreases and the decreasing amplitude reduces,while the tensile stress in the roof grows with the mining slices and the maximum tensile stress will not exceed the allowable tensile stress.(2) The front vertical stress at the working face exceeds the rear vertical stress and both show a trend of decrease with decreasing amplitude of decrease.(3) The slices mined early have more influence on the surrounding rock than the later ones.Similarly,the strata behavior experiences the same trend.The field measured data show that the roof does not break during the mining process,which is consistent with the conclusion.展开更多
Deep coal seam mining floor strata water bursting is a complicate nonlinear system, whose factors are coupling and influencing themselves. It built the analytic structure model for deep coal seam mining floor strata w...Deep coal seam mining floor strata water bursting is a complicate nonlinear system, whose factors are coupling and influencing themselves. It built the analytic structure model for deep coal seam mining floor strata water bursting, the judgment matrix was found by the expert scoring method, the contribution weights of the influenced factors were given out by the equation analytic process. The thirteen controlling factors and five main controlling factors were put award by analyzing weights, so the result was basically conform to the field practice. The expert scoring method and analytic process can convert the objective fact to the subjective cognition, so it is a method that can turn the qualitative into the quantitative. This can be relative objectively and precisely to study the question of many factors and grey box.展开更多
Understanding the spatiotemporal evolution of overburden deformation during coal mining is still a challenge in engineering practice due to the limitation of monitoring techniques. Taking the Yangliu Coal Mine as an e...Understanding the spatiotemporal evolution of overburden deformation during coal mining is still a challenge in engineering practice due to the limitation of monitoring techniques. Taking the Yangliu Coal Mine as an example, a similarity model test was designed and conducted to investigate the deformation and failure mechanism of overlying rocks in this study. Distributed fiber optic sensing(DFOS), highdensity electrical resistivity tomography(HD-ERT) and close-range photogrammetry(CRP) technologies were used in the test for comprehensive analyses. The combined use of the three methods facilitates the investigation of the spatiotemporal evolution characteristics of overburden deformation, showing that the mining-induced deformation of overburden strata was a dynamic evolution process. This process was accompanied by the formation, propagation, closure and redevelopment of separation cracks.Moreover, the key rock stratum with high strength and high-quality lithology played a crucial role in the whole process of overburden deformation. There were generally three failure modes of overburden rock layers, including bending and tension, overall shearing, and shearing and sliding. Shear failure often leads to overburden falling off in blocks, which poses a serious threat to mining safety. Therefore, realtime and accurate monitoring of overburden deformation is of great significance for the safe mining of underground coal seams.展开更多
Based on the decline in exploitation of coal resources, steep coal seam mining and mining face tensions continue to explore the feasibility analysis of steeply inclined faces in the gob. One of the key factors in util...Based on the decline in exploitation of coal resources, steep coal seam mining and mining face tensions continue to explore the feasibility analysis of steeply inclined faces in the gob. One of the key factors in utilizing the technology of gob-side entry retaining in steep coal seams is to safely and effectively prevent caving rock blocks from rushing into the gob-side entry by sliding downwards along levels. Using theoretical analysis and field methods, we numerically simulated the mining process on a fully-mechanized face in a steep coal seam. The stress and deformation process of roof strata has been analyzed, and the difficulty of utilizing the technology is considered and combined with practice in a steep working face in Lvshuidong mine. The feasibility of utilizing the technology of gob-side entry retaining in a steep coal seam has been recognised. We propose that roadways along the left lane offshoot body use a speciallymade reinforced steel dense net to build a dense rock face at the lower head. The results show that the lane offshoot branch creates effective roof control, safe conditions for roadway construction workers, and practical application of steeply inclined gob.展开更多
In this paper,the advantage of using numerical models with the strength reduction method(SRM) to evaluate entry stability in complex multiple-seam conditions is demonstrated.A coal mine under variable topography from ...In this paper,the advantage of using numerical models with the strength reduction method(SRM) to evaluate entry stability in complex multiple-seam conditions is demonstrated.A coal mine under variable topography from the Central Appalachian region is used as a case study.At this mine,unexpected roof conditions were encountered during development below previously mined panels.Stress mapping and observation of ground conditions were used to quantify the success of entry support systems in three room-and-pillar panels.Numerical model analyses were initially conducted to estimate the stresses induced by the multiple-seam mining at the locations of the affected entries.The SRM was used to quantify the stability factor of the supported roof of the entries at selected locations.The SRM-calculated stability factors were compared with observations made during the site visits,and the results demonstrate that the SRM adequately identifies the unexpected roof conditions in this complex case.It is concluded that the SRM can be used to effectively evaluate the likely success of roof supports and the stability condition of entries in coal mines.展开更多
基金supported by the National Natural Science Foundation of China(52204164)Fundamental Research Funds for the Central Universities(2022XJSB03)Young Elite Scientists Sponsorship Program by CAST(2021QNRC001),which are gratefully acknowledged.
文摘Automatic roadway formation by roof cutting is a sustainable nonpillar mining method that has the potential to increase coal recovery,reduce roadway excavation and improve mining safety.In this method,roof cutting is the key process for stress relief,which significantly affects the stability of the formed roadway.This paper presents a directionally single cracking(DSC)technique for roof cutting with considerations of rock properties.The mechanism of the DSC technique was investi-gated by explicit finite element analyses.The DSC technique and roof cutting parameters were evaluated by discrete element simulation and field experiment.On this basis,the optimized DSC technique was tested in the field.The results indicate that the DSC technique could effectively control the blast-induced stress distribution and crack propagation in the roof rock,thus,achieve directionally single cracking on the roadway roof.The DsC technique for roof cutting with optimized parameters could effectively reduce the deformation and improve the stability of the formed roadway.Field engineering application verified the feasibility and effectiveness of the evaluated DSC technique for roof cutting.
基金supported by the National Natural Science Foundation of China (Nos.51304072,51574112 and 51404100)the Excellent Youth Foundation of Henan Scientific Committee (No.164100510013)+2 种基金the Key Scientific Research Project of Colleges and Universities of Henan Province (No.15A440010)the Chinese Ministry of Education Science and Technology Research Project (No.213022A)the Doctoral Foundation of Henan Polytechnic University (No.B2013-007)
文摘A gas–solid coupling model involving coal seam deformation,gas diffusion and seepage,gas adsorption and desorption was built to study the gas transport rule under the effect of protective coal seam mining.The research results indicate:(1) The depressurization effect changes the stress state of an overlying coal seam and causes its permeability to increase,thus gas in the protected coal seam will be desorbed and transported under the effect of a gas pressure gradient,which will cause a decrease in gas pressure.(2) Gas pressure can be further decreased by setting out gas extraction boreholes in the overlying coal seam,which can effectively reduce the coal and gas outburst risk.The research is of important engineering significance for studying the gas transport rule in protected coal seam and providing important reference for controlling coal and gas outbursts in deep mining in China.
基金financial support for this work,provided by the National Natural Science Foundation of China(Nos.51004101 and 50904063)the Science Foundation for Young Scholars of China University of Mining & Technology(Nos.2008A003 and 2009A001 )the Graduate Student Scientific Research Innovation in the University of Jiangsu Province(No.CX07B_149z).
文摘We studied underground pressure and its mechanism during back-gully mining in a shallow coal seam under a bedrock gully slope,by means of physical simulation,numerical modeling and field monitoring.The results show that the intensity of underground pressure is related to its relative position at the coalface.The underground pressure is intensive and the support resistance reaches a maximum when the coalface is at the bottom of the gully,whereas the underground pressure is moderate and decreases gradually when the coalface passes the gully.The mechanism of these changes is analyzed when the slope rotated in a reversed direction to the slope dip during back-gully mining and form an unstable,multilateral block hinged structure,due to slipping.The subsidence of multilateral blocks is considerable when the block fragmentation is small,resulting in enormous changes in the underground pressure.With an increase in the mass of the block body,the block displacement will be reduced in conjunction with an increased clamp effect by both the unbroken rocks and broken rocks in the goaf,resulting in a decrease of the underground pressure.
基金the Natural Science Fund of China(70771060)the Production Safety and Supervision of Management Bureau of China(04-116)+3 种基金the National Soft Science Planed Program(2004DGQ3D090)and(2006GXQ3D154)the Natural Science Fund of Shandong Province(Y2006H10)the Social Science Planning Program of Shandong Province(06BJJ005)the Soft-science Planed Program of Shandong Province(2007RKA134)
文摘Analyzed the situations and characteristics of thin coal seam mining and its mining technologies,and introduced the mining innovation technology used by Tianchen Coal Mine of Zhaozhuang Coal Company of China.This innovation technology combined the fully mechanized mining with individual props,and the working face of mining is over length,irregular form and double units.The rotational adjusting mining technology on thin coal seam is also practiced in this new mining technology.The detail technologies,such as outlays of working face and ways,mining methods,equipments of cutting,transporting and sporting,have been introduced.So that,using the synthetic and creative mining tech- nologies,Tianchen Coal Mine solves the mining problems of thin coal seam successfully.
基金provided by the Research Fund of the Fundamental Research Funds for the Central Universities of China University of Mining & Technology (No. 2010ZDP02B02)the State Key Laboratory of Coal Resources and Mine Safety (No.SKLCRSM08X2)+2 种基金the Jiangsu "333"High Qualified Talentsthe National Natural Science Foundation of China (Nos. 50904063 and51004101)the Scientific Research Foundation of China University of Mining & Technology (Nos. 2008A003 and 2009A001)
文摘We determi:ned a suitable gate road layout in slice mining in an ultra-thick unstable coal seam, using theoretical anallysis and numerical calculations. Based on plasticity theory in terms of limiting equilibrium, the width of chain pillar in the upper slice was calculated to be 18 m. The stress distribution in the chain pillar after the upper slice was mined out was described with numerical simulation. The extent of the effect of stress on the upper chain pillar on the lower solid coal was obtained on the basis of an elastic solution of a distributed force loaded on a half-plane. Three layout designs for lower gate roads were pro- posed and a stability factor was introduced to analyze the stability of the lower pillar with numerical calculation. Gate road translation was determined as the most suitable layout method, which maximizes the extraction rate on the basis of the pillar stability.
基金sponsored by the National Key Basic Research Program of China (No.2013CB227905)Qinglan Projects of Jiangsu Province
文摘Based on the character of upward slicing backfilling mining and the condition of Gonggeyingzi coal mine in Inner Mongolia,this paper describes the studies of the strata behavior and the stress distribution in the process of backfilling mining in extra-thick coal seams.This was achieved by setting up and analyzing the elastic foundation beam model using the ABAQUS software.The results show that:(1) With the gradual mining of different slices,the roof appears to bend continuously but does not break.The vertical stress in the roof decreases and the decreasing amplitude reduces,while the tensile stress in the roof grows with the mining slices and the maximum tensile stress will not exceed the allowable tensile stress.(2) The front vertical stress at the working face exceeds the rear vertical stress and both show a trend of decrease with decreasing amplitude of decrease.(3) The slices mined early have more influence on the surrounding rock than the later ones.Similarly,the strata behavior experiences the same trend.The field measured data show that the roof does not break during the mining process,which is consistent with the conclusion.
文摘Deep coal seam mining floor strata water bursting is a complicate nonlinear system, whose factors are coupling and influencing themselves. It built the analytic structure model for deep coal seam mining floor strata water bursting, the judgment matrix was found by the expert scoring method, the contribution weights of the influenced factors were given out by the equation analytic process. The thirteen controlling factors and five main controlling factors were put award by analyzing weights, so the result was basically conform to the field practice. The expert scoring method and analytic process can convert the objective fact to the subjective cognition, so it is a method that can turn the qualitative into the quantitative. This can be relative objectively and precisely to study the question of many factors and grey box.
基金funding support from the National Natural Science Foundation of China (Grant No. 42225702)the Central Government Guided Local Science and Technology Development Fund (Grant No. 226Z5404G)the Natural Science Foundation of Hebei Province,China (Grant No. D2022508002)。
文摘Understanding the spatiotemporal evolution of overburden deformation during coal mining is still a challenge in engineering practice due to the limitation of monitoring techniques. Taking the Yangliu Coal Mine as an example, a similarity model test was designed and conducted to investigate the deformation and failure mechanism of overlying rocks in this study. Distributed fiber optic sensing(DFOS), highdensity electrical resistivity tomography(HD-ERT) and close-range photogrammetry(CRP) technologies were used in the test for comprehensive analyses. The combined use of the three methods facilitates the investigation of the spatiotemporal evolution characteristics of overburden deformation, showing that the mining-induced deformation of overburden strata was a dynamic evolution process. This process was accompanied by the formation, propagation, closure and redevelopment of separation cracks.Moreover, the key rock stratum with high strength and high-quality lithology played a crucial role in the whole process of overburden deformation. There were generally three failure modes of overburden rock layers, including bending and tension, overall shearing, and shearing and sliding. Shear failure often leads to overburden falling off in blocks, which poses a serious threat to mining safety. Therefore, realtime and accurate monitoring of overburden deformation is of great significance for the safe mining of underground coal seams.
文摘Based on the decline in exploitation of coal resources, steep coal seam mining and mining face tensions continue to explore the feasibility analysis of steeply inclined faces in the gob. One of the key factors in utilizing the technology of gob-side entry retaining in steep coal seams is to safely and effectively prevent caving rock blocks from rushing into the gob-side entry by sliding downwards along levels. Using theoretical analysis and field methods, we numerically simulated the mining process on a fully-mechanized face in a steep coal seam. The stress and deformation process of roof strata has been analyzed, and the difficulty of utilizing the technology is considered and combined with practice in a steep working face in Lvshuidong mine. The feasibility of utilizing the technology of gob-side entry retaining in a steep coal seam has been recognised. We propose that roadways along the left lane offshoot body use a speciallymade reinforced steel dense net to build a dense rock face at the lower head. The results show that the lane offshoot branch creates effective roof control, safe conditions for roadway construction workers, and practical application of steeply inclined gob.
文摘In this paper,the advantage of using numerical models with the strength reduction method(SRM) to evaluate entry stability in complex multiple-seam conditions is demonstrated.A coal mine under variable topography from the Central Appalachian region is used as a case study.At this mine,unexpected roof conditions were encountered during development below previously mined panels.Stress mapping and observation of ground conditions were used to quantify the success of entry support systems in three room-and-pillar panels.Numerical model analyses were initially conducted to estimate the stresses induced by the multiple-seam mining at the locations of the affected entries.The SRM was used to quantify the stability factor of the supported roof of the entries at selected locations.The SRM-calculated stability factors were compared with observations made during the site visits,and the results demonstrate that the SRM adequately identifies the unexpected roof conditions in this complex case.It is concluded that the SRM can be used to effectively evaluate the likely success of roof supports and the stability condition of entries in coal mines.