期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Subsidence prediction method based on equivalent mining height theory for solid backfilling mining 被引量:16
1
作者 郭广礼 朱晓峻 +1 位作者 查剑锋 王强 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第10期3302-3308,共7页
Based on the characteristics of strata movement of solid backfilling mining technology, the surface subsidence prediction method based on the equivalent mining height theory was proposed, and the parameters selection ... Based on the characteristics of strata movement of solid backfilling mining technology, the surface subsidence prediction method based on the equivalent mining height theory was proposed, and the parameters selection guideline of this method was also described. While comparing the parameters of caving mining with equivalent height, the subsidence efficient can be calculated according to the mining height and bulk factor of sagging zone and fracture zone, the tangent of main influence angle of solid backfilling mining is reduced by 0.2-0.5(while it cannot be less than 1.0). For sake of safety, offset of the inflection point is set to zero, and other parameters, such as horizontal movement coefficient and main propagation angle are equal to the corresponding parameters of caving mining with equivalent height. In the last part, a case study of solid backfilling mining subsidence prediction was described. The results show the applicability of this method and the difference of the maximum subsidence point between the prediction and the observation is less than 5%. 展开更多
关键词 solid backfilling mining mining subsidence equivalent mining height subsidence prediction subsidence control
下载PDF
Construction and stability of an extra-large section chamber in solid backfill mining 被引量:10
2
作者 Ju Feng Li Meng +2 位作者 Zhang Jixiong Miao Xiexing Liu Zhan 《International Journal of Mining Science and Technology》 SCIE EI 2014年第6期763-768,共6页
In solid backfill mining without gangue removal, the gangue is separated directly underground and backfilled into goaf. This necessitates the underground construction of an extra-large section chamber for separation e... In solid backfill mining without gangue removal, the gangue is separated directly underground and backfilled into goaf. This necessitates the underground construction of an extra-large section chamber for separation equipments. For the construction of an extra-large section chamber in the Tangshan mine, we proposed an active support through a combination of bolting, anchor cables, lining, and a reinforced chamber floor by inverted arch pouring. ABAQUS software was used to analyze the surrounding rock deformation and the plastic zone development of the chamber under different excavation schemes.The best excavation scheme was determined, and the effectiveness of the combined supports was verified. In practice, the engineering installation showed good overall control of the movement of the surrounding rock, with roof-to-floor and side-to-side convergences of 154.6 and 77.5 mm, respectively,which meets the requirements for underground coal gangue separation. 展开更多
关键词 solid backfill coal mining Extra-large section chamber Effective support Numerical simulation
下载PDF
Gateside packwall design in solid backfill mining-A case study 被引量:1
3
作者 Jiang Haiqiang Miao Xiexing +1 位作者 Zhang Jixiong Liu Shiwei 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第2期261-265,共5页
Based upon characteristic movement features of the overlying strata in solid backfill mining and in-situ observations,an associated model representing a roadway support system has been developed.Based on the Winkler f... Based upon characteristic movement features of the overlying strata in solid backfill mining and in-situ observations,an associated model representing a roadway support system has been developed.Based on the Winkler foundation and beam model,the current study presents a static analysis of the model,thus permitting acquisition of a theoretical formula pertaining to roof convergence.Through use of working face 6304-1(Jisan Colliery) as the research setting,the association between roof convergence magnitude and both packwall strength and width have been elucidated.Based upon observed conditions at the working face,realistic packwall parameters have been formulated,with numerical simulation results and field application results indicating that design parameters garnered from the developed formula successfully adapted to local geological movement and deformation.Accordingly,roadway deformation was shown to be within the permissible range,thus satisfying mine production requirements.The proposed method in the current study may give a design basis for pack design in the context of SBM under similar conditions. 展开更多
关键词 Packwall design solid backfill mining Roof convergence Winkler foundation and beam model Numerical simulation
下载PDF
Mechanical analysis of roof stability under nonlinear compaction of solid backfill body 被引量:14
4
作者 Li Meng Zhang Jixiong +2 位作者 Liu Zhan Zhao Xu Huang Peng 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第5期863-868,共6页
Based on the compaction characteristic test and the nonlinear compaction deformation characteristics of backfill material, this paper applies the theory of nonlinear elastic foundation of thin plate to establish a mec... Based on the compaction characteristic test and the nonlinear compaction deformation characteristics of backfill material, this paper applies the theory of nonlinear elastic foundation of thin plate to establish a mechanical model of backfill body and roof in solid dense backfill coal mining. This study critically analyses the deflection equation of the roof by the energy method, derives the conditions of roof breakage and combined with concrete engineering practice analyses, determines roof movement regularity and stability in solid dense backfill mining. Analysis of the engineering practice of the 13,120 backfill panel of Pingmei 12# mine shows the theoretical maximum of roof convergence in backfill mining to be415 mm which is in significant agreement with the measured value. During the advancing process of solid backfill mining at the panel, the maximum tensile stress on the roof is less than its tensile strength which does not satisfy the conditions for roof breakage. Drilling results on the roof and ground pressure monitoring show that the integrity of roof is strong, which is consistent with the theoretical calculations described in this study. The results presented in the study provide a basis for further investigation into strata movement theory in solid dense backfill mining. 展开更多
关键词 solid backfill mining Backfill body Nonlinear compaction Roof stability
下载PDF
Mining pressure monitoring and analysis in fully mechanized backfilling coal mining face-A case study in Zhai Zhen Coal Mine 被引量:14
5
作者 张强 张吉雄 +2 位作者 康涛 孙强 李伟康 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1965-1972,共8页
Fully mechanized solid backfill mining(FMSBM) technology adopts dense backfill body to support the roof. Based on the distinguishing characteristics and mine pressure control principle in this technology, the basic pr... Fully mechanized solid backfill mining(FMSBM) technology adopts dense backfill body to support the roof. Based on the distinguishing characteristics and mine pressure control principle in this technology, the basic principles and methods for mining pressure monitoring were analyzed and established. And the characteristics of overburden strata movement were analyzed by monitoring the support resistance of hydraulic support, the dynamic subsidence of immediate roof, the stress of backfill body, the front abutment pressure, and the mass ratio of cut coal to backfilled materials. On-site strata behavior measurements of 7403 W solid backfilling working face in Zhai Zhen Coal Mine show that the backfill body can effectively support the overburden load, obviously control the overburden strata movement, and weaken the strata behaviors distinctly. Specific performances are as follows. The support resistance decreases obviously; the dynamic subsidence of immediate roof keeps consistent to the variation of backfill body stress, and tends to be stable after the face retreating to 120-150 m away from the cut. The peak value of front abutment pressure arises at 5-12 m before the operating face, and mass ratio is greater than the designed value of 1.15, which effectively ensures the control of strata movement. The research results are bases for intensively studying basic theories of solid backfill mining strata behaviors and its control, and provide theoretical guidance for engineering design in FMSBM. 展开更多
关键词 fully mechanized solid backfill mining(FMSBM) strata movement strata behavior mining pressure monitoring
下载PDF
Progress in the research and application of coal mining with stowing 被引量:5
6
作者 Junker Martin Witthaus Holger 《International Journal of Mining Science and Technology》 SCIE EI 2013年第1期7-12,共6页
The development and achievements of modern coal mining with stowing are discussed in this paper. The necessity of developing coal mining with stowing is briefly summarized and internal damage within the strata and ext... The development and achievements of modern coal mining with stowing are discussed in this paper. The necessity of developing coal mining with stowing is briefly summarized and internal damage within the strata and external damage on surface induced by longwall working with caving are discussed. Technological features of coal mining with pneumatic stowing in Germany, and fully mechanised coal mining with solid dense stowing in China, are discussed. In German hard coal mining stowing technologies are for technical, infrastructural and economical reasons not applicable. The discussion includes the stowing material transportation system, the stowing machine, and processes at the face. Progressiveness and application universality of China's fully mechanised coal mining with solid dense stowing are illustrated through practical examples with different conditions. Obviously, the fully mechanised coal mine with solid dense stowing can be improved by automaion systems. This paper discusses further developmental potential of the technology. 展开更多
关键词 Coal mining with solid stowing Coal mining with pneumatic stowing Fully mechanised Coal mining with stowing in China and Germany
下载PDF
Overlying strata movement of recovering standing pillars with solid backfilling by physical simulation 被引量:3
7
作者 An Baifu Miao Xiexing +2 位作者 Zhang Jixiong Ju Feng Zhou Nan 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第2期301-307,共7页
To analyze the overlying strata movement law of recovering room mining standing pillars with solid backfilling.Physical simulation experiments with sponge and wood as the backfilling simulation material were tested.Th... To analyze the overlying strata movement law of recovering room mining standing pillars with solid backfilling.Physical simulation experiments with sponge and wood as the backfilling simulation material were tested.The results show that:(i) The covering-rock mechanics of the overly strata comes from "two-arch structures + hinged girder + bend beam" to "backfilling material + hinged girder + bent beam" by increasing the fill ratio from 0%to 85%,the beginning of overlying strata movement appears later and the total duration of subsidence velocity increased from zero to the highest value increases.The trend of "single polarization" of the subsidence velocity curves becomes noticeable and the velocity variation trend becomes stable,(ii) The equiponderate aeolian sand was added to improve the anti-pressure ability of the loess,and the corresponding ground processing & transportation system was designed. 展开更多
关键词 Room mining standing pillars solid backfilling Physical simulation experiment Overlying strata movement
下载PDF
Recovery of Rare Earth Elements Present in Mining Tails, by Leaching with Nitric and Hydrochloric Solutions
8
作者 Peter Fleming Pedro Orrego Felipe Pinilla 《World Journal of Nuclear Science and Technology》 2021年第1期1-16,共16页
The rare earth elements (REE) include the group of 15 lanthanides, scandium and yttrium and have diverse applications in technological and nuclear areas. The existence of REE in massive solid mining wastes generated i... The rare earth elements (REE) include the group of 15 lanthanides, scandium and yttrium and have diverse applications in technological and nuclear areas. The existence of REE in massive solid mining wastes generated in leaching processes of copper minerals in the Atacama region of Chile generates the possibility of creating added value to the treatment of this type of waste and supporting the development of a circular economy, generating a useful by-product in different industries. In order to know the behavior of these elements present in the solid carrier waste, a leaching process was carried out by using two agents separately, corresponding to hydrochloric and nitric acid. The technical feasibility to recover REE from carrier tail was demonstrated, the best leaching agent for these elements being a hydrochloric solution, obtaining a maximum recovery efficiency of 64.5%, for an acid concentration: 3M, temperature: 40<span style="white-space:nowrap;">&#176;</span>C and (liquid/solid) ratio: 4. Lanthanum and cerium present the best individual recoveries compared to the other REE, with a maximum efficiency for a hydrochloric solution of 75.7% and 70.0%, respectively. The interaction of operational parameters that most influence the REE recovery corresponds to the temperature and the (liquid/solid) ratio. After 4 hours of leaching, REE recovery efficiencies remain practically constant. Acid consumptions correspond to 11 (kg HCl/ton mining tail) and 29 (kg HNO<sub>3</sub>/ton mining tail). The highest amount recovery ratios of these elements correspond to 0.355 and 0.224 (kg REE/ton mining tail), for hydrochloric and nitric solutions, respectively. These results influence the types of reagents and parameters to be studied in the following stages of the global process. 展开更多
关键词 Rare Earth Elements LEACHING solid mining Waste mining Tail
下载PDF
Mass ratio design based on compaction properties of backfill materials 被引量:1
9
作者 李猛 张吉雄 +1 位作者 黄鹏 高瑞 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第10期2669-2675,共7页
The backfill-mining mass ratio is the ratio of the mass of the backfill materials in the goaf to the mass of the produced raw coal during solid backfill mining and it is regarded as a direct control index of the backf... The backfill-mining mass ratio is the ratio of the mass of the backfill materials in the goaf to the mass of the produced raw coal during solid backfill mining and it is regarded as a direct control index of the backfill effect in solid backfill mining. To design the backfill-mining mass ratio in a solid backfill mining panel, the backfill-mining mass ratio was defined on the basis of the basic principle of solid backfill mining. In addition, the density-stress relationship of backfill materials under compaction was obtained for five types of materials to derive a design formula for backfill-mining mass ratio. Moreover, the 6304-1 backfill panel under the large-scale dam of Ji′ning No. 3 coal mine was taken as an engineering case to design the backfill-mining mass ratio. In this way, it is found that the designed backfill-mining mass ratio is 1.22, while the mean value of the measured backfill-mining mass ratio is 1.245. Besides, the maximum roof subsidence is only 340 mm which effectively guarantees the backfill effect in the panel and control of strata movement and surface subsidence. 展开更多
关键词 solid backfill mining backfill-mining mass ratio backfill materials in-situ monitoring
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部