In this paper,we prove a sharp anisotropic L;Minkowski inequality involving the total L^(p)anisotropic mean curvature and the anisotropic p-capacity for any bounded domains with smooth boundary in R^(n).As consequence...In this paper,we prove a sharp anisotropic L;Minkowski inequality involving the total L^(p)anisotropic mean curvature and the anisotropic p-capacity for any bounded domains with smooth boundary in R^(n).As consequences,we obtain an anisotropic Willmore inequality,a sharp anisotropic Minkowski inequality for outward F-minimising sets and a sharp volumetric anisotropic Minkowski inequality.For the proof,we utilize a nonlinear potential theoretic approach which has been recently developed by Agostiniani et al.(2019).展开更多
With the development of fuzzy measure theory, the integral inequalities based on Sugeno integral are extensively investigated. We concern on the inequalities of Choquuet integral. The main purpose of this paper is to ...With the development of fuzzy measure theory, the integral inequalities based on Sugeno integral are extensively investigated. We concern on the inequalities of Choquuet integral. The main purpose of this paper is to prove the H?lder inequality for any arbitrary fuzzy measure-based Choquet integral whenever any two of these integrated functions f, g and h are comonotone, and there are three weights. Then we prove Minkowski inequality and Lyapunov inequality for Choquet integral. Moreover, when any two of these integrated functions f1, f2, …, fn are comonotone, we also obtain the Hölder inequality, Minkowski inequality and Lyapunov inequality hold for Choquet integral.展开更多
We prove some analogs inequalities of the logarithmic Minkowski inequality for general nonsymmetric convex bodies. As applications of one of those inequalities, the p-affine isoperimetric inequality and some other ine...We prove some analogs inequalities of the logarithmic Minkowski inequality for general nonsymmetric convex bodies. As applications of one of those inequalities, the p-affine isoperimetric inequality and some other inequalities are obtained.展开更多
Under the Lipschitz and square integrable assumptions on the generator g of BSDEs, this paper proves that if g is positively homogeneous in (y, z) and is decreasing in y, then the Moment inequality for BSDEs with ge...Under the Lipschitz and square integrable assumptions on the generator g of BSDEs, this paper proves that if g is positively homogeneous in (y, z) and is decreasing in y, then the Moment inequality for BSDEs with generator g holds in general, and if g is positively homogeneous and sub-additive in (y, z), then the HSlder inequality and Minkowski inequality for BSDEs with generator g hold in general.展开更多
A general framework of polar Brunn-Minkowski theory that unifies the Orlicz Brunn-Minkowski inequality, the Lp Brunn-Minkowski inequality for p ∈(0,1) and the logBrunn-Minkowski inequality all for polar bodies is pro...A general framework of polar Brunn-Minkowski theory that unifies the Orlicz Brunn-Minkowski inequality, the Lp Brunn-Minkowski inequality for p ∈(0,1) and the logBrunn-Minkowski inequality all for polar bodies is provided. It is shown that this general polar φ Brunn-Minkowski inequality is equivalent to a general polar φ Minkowski mixed volume inequality.展开更多
The centroafhine Minkowski problem is studied, which is the critical case of the L_p-Minkowski problem. It admits a variational structure that plays an important role in studying the existence of solutions.In this pap...The centroafhine Minkowski problem is studied, which is the critical case of the L_p-Minkowski problem. It admits a variational structure that plays an important role in studying the existence of solutions.In this paper, we find that there is generally no maximizer of the corresponding functional for the centroaffine Minkowski problem.展开更多
In this paper,the definition of the general L p-mixed projection bodies is introduced,and the general L p-projection bodies given by Ludwig is a special case for the general L p-mixed projection bodies.Then the Petty ...In this paper,the definition of the general L p-mixed projection bodies is introduced,and the general L p-projection bodies given by Ludwig is a special case for the general L p-mixed projection bodies.Then the Petty projection inequality for the general L p-mixed projection bodies is shown.Moreover,the monotonicity for the general L p-mixed projection bodies is obtained.展开更多
The purpose of this paper is to generalize the notion of intersection bodies to that of quasi Lp-intersection bodies. The Lp-analogs of the Busemann intersection inequality and the Brunn- Minkowski inequality for the ...The purpose of this paper is to generalize the notion of intersection bodies to that of quasi Lp-intersection bodies. The Lp-analogs of the Busemann intersection inequality and the Brunn- Minkowski inequality for the quasi Lp-intersection bodies are obtained. The Aleksandrov Fenchel inequality for the mixed quasi Lp-intersection bodies is also established.展开更多
The notion of mixed quermassintegrals in the classical Brunn-Minkowski theory is extended to that of Orlicz mixed quermassintegrals in the Orlicz Brunn-Minkowski theory. The analogs of the classical Cauchy- Kuhota for...The notion of mixed quermassintegrals in the classical Brunn-Minkowski theory is extended to that of Orlicz mixed quermassintegrals in the Orlicz Brunn-Minkowski theory. The analogs of the classical Cauchy- Kuhota formula, the Minkowski isoperimetric inequality and the Brunn-Minkowski inequality are established for this new Orlicz mixed quermassintegrals.展开更多
We show some upper bounds for the product of arbitrarily selected singular values of the sum of two matrices.The results are additional to our previous work on the lower bound eigenvalue inequalities of the sum of two...We show some upper bounds for the product of arbitrarily selected singular values of the sum of two matrices.The results are additional to our previous work on the lower bound eigenvalue inequalities of the sum of two positive semidefinite matrices.Besides,we state explicitly Hoffman’s minimax theorem with a proof,and as applications of our main results,we revisit and give estimates for related determinant inequalities of Hua type.展开更多
基金supported by National Natural Science Foundation of China(Grant No.11871406)。
文摘In this paper,we prove a sharp anisotropic L;Minkowski inequality involving the total L^(p)anisotropic mean curvature and the anisotropic p-capacity for any bounded domains with smooth boundary in R^(n).As consequences,we obtain an anisotropic Willmore inequality,a sharp anisotropic Minkowski inequality for outward F-minimising sets and a sharp volumetric anisotropic Minkowski inequality.For the proof,we utilize a nonlinear potential theoretic approach which has been recently developed by Agostiniani et al.(2019).
基金supported by the National Natural Science Foundation of China(no.51374199).
文摘With the development of fuzzy measure theory, the integral inequalities based on Sugeno integral are extensively investigated. We concern on the inequalities of Choquuet integral. The main purpose of this paper is to prove the H?lder inequality for any arbitrary fuzzy measure-based Choquet integral whenever any two of these integrated functions f, g and h are comonotone, and there are three weights. Then we prove Minkowski inequality and Lyapunov inequality for Choquet integral. Moreover, when any two of these integrated functions f1, f2, …, fn are comonotone, we also obtain the Hölder inequality, Minkowski inequality and Lyapunov inequality hold for Choquet integral.
基金supported by National Natural Science Foundation of China(Grant Nos.11671325 and 11401486)the Natural Science Foundation Project of CQ CSTC(Grant No.cstc2016jcyj A0465)
文摘We prove some analogs inequalities of the logarithmic Minkowski inequality for general nonsymmetric convex bodies. As applications of one of those inequalities, the p-affine isoperimetric inequality and some other inequalities are obtained.
基金Supported by the National Natural Science Foundation of China(No.10671205,)Youth Foundation of China University of Mining and Technology(No.2006A041,2007A029)
文摘Under the Lipschitz and square integrable assumptions on the generator g of BSDEs, this paper proves that if g is positively homogeneous in (y, z) and is decreasing in y, then the Moment inequality for BSDEs with generator g holds in general, and if g is positively homogeneous and sub-additive in (y, z), then the HSlder inequality and Minkowski inequality for BSDEs with generator g hold in general.
基金Supported by the Natural Science Foundation of Chongqing(CSTC-2018JCYJ-AX0190)。
文摘A general framework of polar Brunn-Minkowski theory that unifies the Orlicz Brunn-Minkowski inequality, the Lp Brunn-Minkowski inequality for p ∈(0,1) and the logBrunn-Minkowski inequality all for polar bodies is provided. It is shown that this general polar φ Brunn-Minkowski inequality is equivalent to a general polar φ Minkowski mixed volume inequality.
基金supported by National Natural Science Foundation of China (Grant No 11401527)
文摘The centroafhine Minkowski problem is studied, which is the critical case of the L_p-Minkowski problem. It admits a variational structure that plays an important role in studying the existence of solutions.In this paper, we find that there is generally no maximizer of the corresponding functional for the centroaffine Minkowski problem.
文摘In this paper,the definition of the general L p-mixed projection bodies is introduced,and the general L p-projection bodies given by Ludwig is a special case for the general L p-mixed projection bodies.Then the Petty projection inequality for the general L p-mixed projection bodies is shown.Moreover,the monotonicity for the general L p-mixed projection bodies is obtained.
基金Supported by National Natural Sciences Foundation of China(10671117)
文摘The purpose of this paper is to generalize the notion of intersection bodies to that of quasi Lp-intersection bodies. The Lp-analogs of the Busemann intersection inequality and the Brunn- Minkowski inequality for the quasi Lp-intersection bodies are obtained. The Aleksandrov Fenchel inequality for the mixed quasi Lp-intersection bodies is also established.
基金supported by National Natural Science Foundation of China(Grant No.11001163)Innovation Program of Shanghai Municipal Education Commission(Grant No.11YZ11)
文摘The notion of mixed quermassintegrals in the classical Brunn-Minkowski theory is extended to that of Orlicz mixed quermassintegrals in the Orlicz Brunn-Minkowski theory. The analogs of the classical Cauchy- Kuhota formula, the Minkowski isoperimetric inequality and the Brunn-Minkowski inequality are established for this new Orlicz mixed quermassintegrals.
基金Xi’s work was partially supported by the National Natural Science Foundation of China(Grant No.11361038)。
文摘We show some upper bounds for the product of arbitrarily selected singular values of the sum of two matrices.The results are additional to our previous work on the lower bound eigenvalue inequalities of the sum of two positive semidefinite matrices.Besides,we state explicitly Hoffman’s minimax theorem with a proof,and as applications of our main results,we revisit and give estimates for related determinant inequalities of Hua type.