期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
ON THE WILLMORE’S THEOREM FOR CONVEX HYPERSURFACES 被引量:1
1
作者 周家足 《Acta Mathematica Scientia》 SCIE CSCD 2011年第2期361-366,共6页
Let M be a compact convex hypersurface of class C2, which is assumed to bound a nonempty convex body K in the Euclidean space Rn and H be the mean curvature of M. We obtain a lower bound of the total square of mean cu... Let M be a compact convex hypersurface of class C2, which is assumed to bound a nonempty convex body K in the Euclidean space Rn and H be the mean curvature of M. We obtain a lower bound of the total square of mean curvature fM H2dA The bound is the Minkowski quermassintegral of the convex body K. The total square of mean curvature attains the lower bound when M is an (n - 1)-sphere. 展开更多
关键词 Mean curvature the Willmore deficit minkowski quermassintegrale
下载PDF
The Willmore functional and the containment problem in R^4 被引量:9
2
作者 Jia-zu ZHOU School of Mathematics and Statistics, Southwest University, Chongqing 400715, China Department of Mathematics, Polytechnic University, Brooklyn, NY 11201, USA 《Science China Mathematics》 SCIE 2007年第3期325-333,共9页
Let∑be a convex hypersurface in the Euclidean space R4 with mean curvature H. We obtain a geometric lower bound for the Willmore functional∫∑H2dσ. This bound is an invariant involving the area of∑, the volume and... Let∑be a convex hypersurface in the Euclidean space R4 with mean curvature H. We obtain a geometric lower bound for the Willmore functional∫∑H2dσ. This bound is an invariant involving the area of∑, the volume and Minkowski quermassintegrals of the convex body that∑bounds. We also obtain a sufficient condition for a convex body to contain another in the Euclidean space R4. 展开更多
关键词 mean curvature scalar curvature kinematic formula minkowski quermassintegrals convex body convex hypersurface 52A22 53C65 51C16
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部