Let M be a compact convex hypersurface of class C2, which is assumed to bound a nonempty convex body K in the Euclidean space Rn and H be the mean curvature of M. We obtain a lower bound of the total square of mean cu...Let M be a compact convex hypersurface of class C2, which is assumed to bound a nonempty convex body K in the Euclidean space Rn and H be the mean curvature of M. We obtain a lower bound of the total square of mean curvature fM H2dA The bound is the Minkowski quermassintegral of the convex body K. The total square of mean curvature attains the lower bound when M is an (n - 1)-sphere.展开更多
Let∑be a convex hypersurface in the Euclidean space R4 with mean curvature H. We obtain a geometric lower bound for the Willmore functional∫∑H2dσ. This bound is an invariant involving the area of∑, the volume and...Let∑be a convex hypersurface in the Euclidean space R4 with mean curvature H. We obtain a geometric lower bound for the Willmore functional∫∑H2dσ. This bound is an invariant involving the area of∑, the volume and Minkowski quermassintegrals of the convex body that∑bounds. We also obtain a sufficient condition for a convex body to contain another in the Euclidean space R4.展开更多
文摘Let M be a compact convex hypersurface of class C2, which is assumed to bound a nonempty convex body K in the Euclidean space Rn and H be the mean curvature of M. We obtain a lower bound of the total square of mean curvature fM H2dA The bound is the Minkowski quermassintegral of the convex body K. The total square of mean curvature attains the lower bound when M is an (n - 1)-sphere.
基金This work was partially supported by the National Natural Science Foundation of China(Grant No.10671159)the Funds for Qualified Scientists and Technicians in Guizhou Province of China and Southwest University.
文摘Let∑be a convex hypersurface in the Euclidean space R4 with mean curvature H. We obtain a geometric lower bound for the Willmore functional∫∑H2dσ. This bound is an invariant involving the area of∑, the volume and Minkowski quermassintegrals of the convex body that∑bounds. We also obtain a sufficient condition for a convex body to contain another in the Euclidean space R4.