The influences of machining and misalignment errors play a very critical role in the performance of the anti-backlash double-roller enveloping hourglass worm gear(ADEHWG).However,a corresponding efficient method for e...The influences of machining and misalignment errors play a very critical role in the performance of the anti-backlash double-roller enveloping hourglass worm gear(ADEHWG).However,a corresponding efficient method for eliminating or reducing these errors on the tooth profile of the ADEHWG is seldom reported.The gear engagement equation and tooth profile equation for considering six different errors that could arise from the machining and gear misalignment are derived from the theories of differential geometry and gear meshing.Also,the tooth contact analysis(TCA) is used to systematically investigate the influence of the machining and misalignment errors on the contact curves and the tooth profile by means of numerical analysis and three-dimensional solid modeling.The research results show that vertical angular misalignment of the worm wheel(Δβ) has the strongest influences while the tooth angle error(Δα) has the weakest influences on the contact curves and the tooth profile.A novel efficient approach is proposed and used to minimize the effect of the errors in manufacturing by changing the radius of the grinding wheel and the approaching point of contact.The results from the TCA and the experiment demonstrate that this tooth profile design modification method can indeed reduce the machining and misalignment errors.This modification design method is helpful in understanding the manufacturing technology of the ADEHWG.展开更多
Misalignment angle error model describing the SINS mathematical platform error is presented in this paper following the idea of small misalignment angle error model and large azimuth misalignment angle error model.It ...Misalignment angle error model describing the SINS mathematical platform error is presented in this paper following the idea of small misalignment angle error model and large azimuth misalignment angle error model.It can be considered that the three misalignment angles are independent of the rotational sequence in the misalignment error model,but not suitable in the large misalignment error model.The error angle of Euler platform is used to represent the three misalignment angles from theoretical navigation coordinate system to computational navigation coordinate system.The Euler platform error angle is utilized to represent the mathematical platform error and its physical meaning is very clear.The SINS nonlinear error model is deduced by using the error angle of Euler platform and is simplified under the condition of large azimuth error and small error.The simplified results are more comprehensive and accurate than the large azimuth misalignment error model.The damping SINS algorithm and its error model are proposed to change the structure of the strapdown inertial navigation algorithm by using the external damping information.The accuracy of SINS error model of large Euler platform error angle is simulated,and has strong practicability in initial alignment and is conducive to reducing the amount of calculation.展开更多
基金supported by National Natural Science Foundation of China(Grant Nos. 50775190No.51275425)+2 种基金Spring Sunshine Plan of Ministry of Education of China(Grant No. 10202258)Talent Introduction of Xihua UniversityChina(Grant No. Z1220217)
文摘The influences of machining and misalignment errors play a very critical role in the performance of the anti-backlash double-roller enveloping hourglass worm gear(ADEHWG).However,a corresponding efficient method for eliminating or reducing these errors on the tooth profile of the ADEHWG is seldom reported.The gear engagement equation and tooth profile equation for considering six different errors that could arise from the machining and gear misalignment are derived from the theories of differential geometry and gear meshing.Also,the tooth contact analysis(TCA) is used to systematically investigate the influence of the machining and misalignment errors on the contact curves and the tooth profile by means of numerical analysis and three-dimensional solid modeling.The research results show that vertical angular misalignment of the worm wheel(Δβ) has the strongest influences while the tooth angle error(Δα) has the weakest influences on the contact curves and the tooth profile.A novel efficient approach is proposed and used to minimize the effect of the errors in manufacturing by changing the radius of the grinding wheel and the approaching point of contact.The results from the TCA and the experiment demonstrate that this tooth profile design modification method can indeed reduce the machining and misalignment errors.This modification design method is helpful in understanding the manufacturing technology of the ADEHWG.
基金This work is funded by Natural Science Foundation of Jiangsu Province under Grant BK20160955a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions and Science Research Foundation of Nanjing University of Information Science and Technology under Grant20110430+1 种基金Open Foundation of Jiangsu Key Laboratory of Meteorological Observation and Information Processing(KDXS1304)Open Foundation of Jiangsu Key Laboratory of Ocean Dynamic Remote Sensing and Acoustics(KHYS1405).
文摘Misalignment angle error model describing the SINS mathematical platform error is presented in this paper following the idea of small misalignment angle error model and large azimuth misalignment angle error model.It can be considered that the three misalignment angles are independent of the rotational sequence in the misalignment error model,but not suitable in the large misalignment error model.The error angle of Euler platform is used to represent the three misalignment angles from theoretical navigation coordinate system to computational navigation coordinate system.The Euler platform error angle is utilized to represent the mathematical platform error and its physical meaning is very clear.The SINS nonlinear error model is deduced by using the error angle of Euler platform and is simplified under the condition of large azimuth error and small error.The simplified results are more comprehensive and accurate than the large azimuth misalignment error model.The damping SINS algorithm and its error model are proposed to change the structure of the strapdown inertial navigation algorithm by using the external damping information.The accuracy of SINS error model of large Euler platform error angle is simulated,and has strong practicability in initial alignment and is conducive to reducing the amount of calculation.