The positron lifetime spectra of severalAl_(93.3-x)Fe_(4.3)V_(0.7)Si_(1.7)Mm_x (x = 0.5%, 1.0%, 3.0%, atom fraction) alloys with differentcontent of misch metal prepared by rapid solidification were measured, and the ...The positron lifetime spectra of severalAl_(93.3-x)Fe_(4.3)V_(0.7)Si_(1.7)Mm_x (x = 0.5%, 1.0%, 3.0%, atom fraction) alloys with differentcontent of misch metal prepared by rapid solidification were measured, and the variations on theinterfacial defects with the content of misch metal were revealed by an analysis of the lifetimeresults. The interface characteristics derived from the lifetime results could be used to give asatisfactory interpretation of the dependence of mechanical properties on the content of mischmetal.展开更多
The formation, thermal stability and mechanical properties of Misch metal (Mm)-based alloy bulk metallic glasses (BMGs) with composition of Mm55Al25Cu10Ni5Co5 were investigated by means of X-ray diffraction, diffe...The formation, thermal stability and mechanical properties of Misch metal (Mm)-based alloy bulk metallic glasses (BMGs) with composition of Mm55Al25Cu10Ni5Co5 were investigated by means of X-ray diffraction, differential scanning calorimetry, differential thermal analysis and compression test. The results indicate that the Mm-based BMGs exhibit a distinct glass transition and a wide supercooled liquid region Δ Tx( 〉 60 K) before crystallization. The alloy can be fabricated into bulk glassy form of 3 mm in diameter by copper mold casting methods. Compared with the La55Al25Cu10 Ni5Co5 BMG, the Mm55Al25Cu10Ni5Co5 BMG shows higher compression fracture strength and lower cost. A new parameter γ and melting temperature Tl are closely correlated with the glass forming ability (GFA) of Mm-based alloys.展开更多
The crystallization kinetics of Mm55Al25Cu10Ni5Co5 bulk metallic glass (BMG) was investigated by means of differential scanning calorimetry (DSC) in the mode of continuous heating or isothermal annealing. It was f...The crystallization kinetics of Mm55Al25Cu10Ni5Co5 bulk metallic glass (BMG) was investigated by means of differential scanning calorimetry (DSC) in the mode of continuous heating or isothermal annealing. It was found that the apparent activation energy Eg, Ex and Ep of the BMG calculated by Kissinger's method were 189.58, 170.68 and 170.41 kJ·mol^-1, respectively, which was bigger than those of La55Al25Cu10Ni5Co5 BMG indicating that thermal stability of the former was higher than that of the latter. The local activation energy obtained using Ozawa equation decreased as crystallization proceeded except for the initial stage. The Avrami exponents were calculated to be in the range of 3.26 - 5.23 for different crystallization stages and isothermal temperatures. This implied that crystallization of Mm55Al25Cu10Ni5Co2 BMG was governed by diffusion-controlled three-dimensional growth with either reduced or increased nucleation rate, depending on isothermal temperature. Inconsistency of thermal stability with glass-forming ability for Mm(La)-Al-Cu-Ni-Co BMGs was discussed.展开更多
Mg-10Li-4Al and Mg-10Li-4Al-0.6RE alloys were prepared with vacuum induction melting method. The influence of RE on microstructure and mechanical properties was studied with SEM, XRD and tensile tester. The results sh...Mg-10Li-4Al and Mg-10Li-4Al-0.6RE alloys were prepared with vacuum induction melting method. The influence of RE on microstructure and mechanical properties was studied with SEM, XRD and tensile tester. The results showed that, the addition of RE made the α(Mg) phase disappeared and caused the formation of Al3La phase. And it improved both the tensile strength and elongation percentage of alloys.展开更多
The effect of cerium-rich misch metal addition on the microstructure and properties of squeeze cast magnesium alloys AZ81 was empirically investigated.The results indicate that the addition of cerium-rich misch metal ...The effect of cerium-rich misch metal addition on the microstructure and properties of squeeze cast magnesium alloys AZ81 was empirically investigated.The results indicate that the addition of cerium-rich misch metal modifies the microstructure gradually.With the increase of the RE addition,the amount of Mg_(17)Al_(12) decreases while that of Al_(11)(RE)_3 increases,accompanied by grain refinement.When the addition reaches 1.5%,the grain refinement becomes obvious.However,when the addition exceeds 2.0%, Al_(11)(RE)_3 phase coarsens into rod shape and the grain size increases.The tensile properties of the AZ81 at both room temperature and 150℃increase with the addition,and reach their optimal values with the addition of 1.5%.Further increase of the addition to above 2.0%decreases the tensile properties considerably.The tensile fracture of the alloy is characterized by the cleavage of the brittle second phases and ductile dimples of the matrix.展开更多
The misch-metal (MM) partially substituted Nd-Fe-B sintered magnets were fabricated by the dual alloy method, and the crystal structure, microstructure, and magnetic properties were analyzed comprehensively. X-ray d...The misch-metal (MM) partially substituted Nd-Fe-B sintered magnets were fabricated by the dual alloy method, and the crystal structure, microstructure, and magnetic properties were analyzed comprehensively. X-ray diffraction (XRD) reveals that the increasing content of the MM has an inconsiderable effect on the crystallographic alignment of the magnets. Grains of the two main phases are uniformly distributed, and slightly deteriorate on the grain boundary. Due to the diffusion between the adjacent grains, the MM substituted Nd-Fe-B magnets contain three types of components with different Ce/La concentrations. Moreover, the first-order reversal curve (FORC) diagram is introduced to analyze the magnetization reversal process, coercivity mechanism, and distribution of reversal field in magnetic samples. The analysis indicates that there are two major reversal components, corresponding to the two different main phases. The domain nucleation and growth are determined to be the leading mechanism in controlling the magnetization reversal processes of the magnets sintered by the dual alloy method.展开更多
Mg-Al-Zn-M M (misch metal) alloy powders were manufactured by inert gas atomization and the characteristics of alloy powders were investigated.In spite of the low fluidity and easy oxidation of the magnesium melt,th...Mg-Al-Zn-M M (misch metal) alloy powders were manufactured by inert gas atomization and the characteristics of alloy powders were investigated.In spite of the low fluidity and easy oxidation of the magnesium melt,the spherical powder was made successfully with the improved three piece nozzle systems of gas atomization unit. It was found that most of the solidified powders with particles size of less than 50μm in diameter were single crystal and the solidification structure of rapidly solidified powders showed a typical dendritic morphology because of supercooling prior to nucleation.The spacing of secondary denrite arms was deceasing as the size of powders was decreasing.The rapidly solidified powders were consolidated by vacuum hot extrusion and the effects of misch metal addition to AZ91 on mechanical properties of extruded bars were also examined.During extrusion of the rapidly solidified powders,their dendritic structure was broken into fragments and remained as grains of about 3μm in size.The Mg-Al-Ce intermetallic compounds formed in the interdendritic regions of powders were finely broken,too.The tensile strength and ductility obtained in as-extruded Mg-9 wt pct Al-1 wt pct Zn-3 wt pct MM alloy wereσ-(T.S.) =383 MPa andε=10.6%,respectively.All of these improvements on mechanical properties were resulted from the refined microstructure and second-phase dispersions.展开更多
Metal–organic frameworks (MOFs) as photocatalysts and photocatalyst supports combine several advantages of homogeneous and heterogeneous catalyses, including stability, post-reaction separation, catalyst reusability,...Metal–organic frameworks (MOFs) as photocatalysts and photocatalyst supports combine several advantages of homogeneous and heterogeneous catalyses, including stability, post-reaction separation, catalyst reusability,and tunability, and they have been intensively studied for photocatalytic applications. There are several reviews that focus mainly or even entirely on experimental work. The present review is intended to complement those reviews by focusing on computational work that can provide a further understanding of the photocatalytic properties of MOF photocatalysts. We first present a summary of computational methods, including density functional theory, combined quantum mechanical and molecular mechanical methods, and force fields for MOFs. Then, computational investigations on MOF-based photocatalysis are briefly discussed. The discussions focus on the electronic structure, photoexcitation, charge mobility, and photoredox catalysis of MOFs, especially the widely studied Ui O-66-based MOFs.展开更多
The iron atomic location in Al(93.3-x)Fe(4.3)V(0.7)Si(1.7)Mm(x)(x=0, 1, 3, 6) alloys was investigated by means of Mossbauer spectroscopy and X-ray diffraction. The results show that the appearance of bcc a-Al-13(Fe, V...The iron atomic location in Al(93.3-x)Fe(4.3)V(0.7)Si(1.7)Mm(x)(x=0, 1, 3, 6) alloys was investigated by means of Mossbauer spectroscopy and X-ray diffraction. The results show that the appearance of bcc a-Al-13(Fe, V)(3)Si dispersive particles existing in Al-Fe-V-Si alloy is suppressed by:the addition of misch metal, A new Al-Fe-V-Si-Mm amorphous alloy is formed when the concentration of misch metal is up to 6 at%, in the meantime, the corresponding structural analysis is made using Voigt-based fitting method.展开更多
基金This work is supported by the National Natural Science Foundation of China (No. 59771020)
文摘The positron lifetime spectra of severalAl_(93.3-x)Fe_(4.3)V_(0.7)Si_(1.7)Mm_x (x = 0.5%, 1.0%, 3.0%, atom fraction) alloys with differentcontent of misch metal prepared by rapid solidification were measured, and the variations on theinterfacial defects with the content of misch metal were revealed by an analysis of the lifetimeresults. The interface characteristics derived from the lifetime results could be used to give asatisfactory interpretation of the dependence of mechanical properties on the content of mischmetal.
文摘The formation, thermal stability and mechanical properties of Misch metal (Mm)-based alloy bulk metallic glasses (BMGs) with composition of Mm55Al25Cu10Ni5Co5 were investigated by means of X-ray diffraction, differential scanning calorimetry, differential thermal analysis and compression test. The results indicate that the Mm-based BMGs exhibit a distinct glass transition and a wide supercooled liquid region Δ Tx( 〉 60 K) before crystallization. The alloy can be fabricated into bulk glassy form of 3 mm in diameter by copper mold casting methods. Compared with the La55Al25Cu10 Ni5Co5 BMG, the Mm55Al25Cu10Ni5Co5 BMG shows higher compression fracture strength and lower cost. A new parameter γ and melting temperature Tl are closely correlated with the glass forming ability (GFA) of Mm-based alloys.
基金Project supported by the National Natural Science Foundation of Liaoning Province (20032137)
文摘The crystallization kinetics of Mm55Al25Cu10Ni5Co5 bulk metallic glass (BMG) was investigated by means of differential scanning calorimetry (DSC) in the mode of continuous heating or isothermal annealing. It was found that the apparent activation energy Eg, Ex and Ep of the BMG calculated by Kissinger's method were 189.58, 170.68 and 170.41 kJ·mol^-1, respectively, which was bigger than those of La55Al25Cu10Ni5Co5 BMG indicating that thermal stability of the former was higher than that of the latter. The local activation energy obtained using Ozawa equation decreased as crystallization proceeded except for the initial stage. The Avrami exponents were calculated to be in the range of 3.26 - 5.23 for different crystallization stages and isothermal temperatures. This implied that crystallization of Mm55Al25Cu10Ni5Co2 BMG was governed by diffusion-controlled three-dimensional growth with either reduced or increased nucleation rate, depending on isothermal temperature. Inconsistency of thermal stability with glass-forming ability for Mm(La)-Al-Cu-Ni-Co BMGs was discussed.
基金National Hi-Tech Research Development Programof China (2006AA03Z511)Heilongjian Province Education Commission Science &Technology Research Project (11523018)Harbin Engineering University Fundamental Research Funding Project (002100260739)
文摘Mg-10Li-4Al and Mg-10Li-4Al-0.6RE alloys were prepared with vacuum induction melting method. The influence of RE on microstructure and mechanical properties was studied with SEM, XRD and tensile tester. The results showed that, the addition of RE made the α(Mg) phase disappeared and caused the formation of Al3La phase. And it improved both the tensile strength and elongation percentage of alloys.
基金Project(2007CB613702)supported by the National Basic Research Program of ChinaProject(2006BA104B04-2)supported byChongqing S&T Research Program,China
文摘The effect of cerium-rich misch metal addition on the microstructure and properties of squeeze cast magnesium alloys AZ81 was empirically investigated.The results indicate that the addition of cerium-rich misch metal modifies the microstructure gradually.With the increase of the RE addition,the amount of Mg_(17)Al_(12) decreases while that of Al_(11)(RE)_3 increases,accompanied by grain refinement.When the addition reaches 1.5%,the grain refinement becomes obvious.However,when the addition exceeds 2.0%, Al_(11)(RE)_3 phase coarsens into rod shape and the grain size increases.The tensile properties of the AZ81 at both room temperature and 150℃increase with the addition,and reach their optimal values with the addition of 1.5%.Further increase of the addition to above 2.0%decreases the tensile properties considerably.The tensile fracture of the alloy is characterized by the cleavage of the brittle second phases and ductile dimples of the matrix.
基金Project supported by the National Natural Science Foundation of China(Grant No.51590880)the National Key Research and Development Program of China(Grant Nos.2014CB643702 and 2016YFB0700903)+1 种基金Key Research Program of the Chinese Academy of Sciences of Chinathe Inner Mongolia Science and Technology Major Project of China 2016
文摘The misch-metal (MM) partially substituted Nd-Fe-B sintered magnets were fabricated by the dual alloy method, and the crystal structure, microstructure, and magnetic properties were analyzed comprehensively. X-ray diffraction (XRD) reveals that the increasing content of the MM has an inconsiderable effect on the crystallographic alignment of the magnets. Grains of the two main phases are uniformly distributed, and slightly deteriorate on the grain boundary. Due to the diffusion between the adjacent grains, the MM substituted Nd-Fe-B magnets contain three types of components with different Ce/La concentrations. Moreover, the first-order reversal curve (FORC) diagram is introduced to analyze the magnetization reversal process, coercivity mechanism, and distribution of reversal field in magnetic samples. The analysis indicates that there are two major reversal components, corresponding to the two different main phases. The domain nucleation and growth are determined to be the leading mechanism in controlling the magnetization reversal processes of the magnets sintered by the dual alloy method.
文摘Mg-Al-Zn-M M (misch metal) alloy powders were manufactured by inert gas atomization and the characteristics of alloy powders were investigated.In spite of the low fluidity and easy oxidation of the magnesium melt,the spherical powder was made successfully with the improved three piece nozzle systems of gas atomization unit. It was found that most of the solidified powders with particles size of less than 50μm in diameter were single crystal and the solidification structure of rapidly solidified powders showed a typical dendritic morphology because of supercooling prior to nucleation.The spacing of secondary denrite arms was deceasing as the size of powders was decreasing.The rapidly solidified powders were consolidated by vacuum hot extrusion and the effects of misch metal addition to AZ91 on mechanical properties of extruded bars were also examined.During extrusion of the rapidly solidified powders,their dendritic structure was broken into fragments and remained as grains of about 3μm in size.The Mg-Al-Ce intermetallic compounds formed in the interdendritic regions of powders were finely broken,too.The tensile strength and ductility obtained in as-extruded Mg-9 wt pct Al-1 wt pct Zn-3 wt pct MM alloy wereσ-(T.S.) =383 MPa andε=10.6%,respectively.All of these improvements on mechanical properties were resulted from the refined microstructure and second-phase dispersions.
基金supported as part of the Nanoporous Materials Genome Center by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, under Award No. DE-FG0217ER16362
文摘Metal–organic frameworks (MOFs) as photocatalysts and photocatalyst supports combine several advantages of homogeneous and heterogeneous catalyses, including stability, post-reaction separation, catalyst reusability,and tunability, and they have been intensively studied for photocatalytic applications. There are several reviews that focus mainly or even entirely on experimental work. The present review is intended to complement those reviews by focusing on computational work that can provide a further understanding of the photocatalytic properties of MOF photocatalysts. We first present a summary of computational methods, including density functional theory, combined quantum mechanical and molecular mechanical methods, and force fields for MOFs. Then, computational investigations on MOF-based photocatalysis are briefly discussed. The discussions focus on the electronic structure, photoexcitation, charge mobility, and photoredox catalysis of MOFs, especially the widely studied Ui O-66-based MOFs.
文摘The iron atomic location in Al(93.3-x)Fe(4.3)V(0.7)Si(1.7)Mm(x)(x=0, 1, 3, 6) alloys was investigated by means of Mossbauer spectroscopy and X-ray diffraction. The results show that the appearance of bcc a-Al-13(Fe, V)(3)Si dispersive particles existing in Al-Fe-V-Si alloy is suppressed by:the addition of misch metal, A new Al-Fe-V-Si-Mm amorphous alloy is formed when the concentration of misch metal is up to 6 at%, in the meantime, the corresponding structural analysis is made using Voigt-based fitting method.