A linear matrix inequality (LMI)-based sliding surface design method for integral sliding mode control of uncertain time- delay systems with mismatching uncertainties is proposed. The uncertain time-delay system und...A linear matrix inequality (LMI)-based sliding surface design method for integral sliding mode control of uncertain time- delay systems with mismatching uncertainties is proposed. The uncertain time-delay system under consideration may have mis- matching norm bounded uncertainties in the state matrix as well as the input matrix, A sufficient condition for the existence of a sliding surface is given to guarantee asymptotic stability of the full order slJdJng mode dynamics. An LMI characterization of the slid- ing surface is given, together with an integral sliding mode control law guaranteeing the existence of a sliding mode from the initial time. Finally, a simulation is given to show the effectiveness of the proposed method.展开更多
In order to solve the mismatched uncertainties of a class of nonlinearsystems, a control method of sliding mode control (SMC) based on the backstepping design isproposed. It introduces SMC in to the last step of backs...In order to solve the mismatched uncertainties of a class of nonlinearsystems, a control method of sliding mode control (SMC) based on the backstepping design isproposed. It introduces SMC in to the last step of backstepping design to modify the backsteppingalgorithm. This combination not only enables the generalization of the backstepping design to beapplied to more general nonlinear systems, but also makes the SMC method become effective in solvingthe mismatched uncertainties. The SMC based on the backstepping design is applied to the flightcontrol system design of an aerodynamic missile. The control system is researched throughsimulation. The simulation results show the effectiveness of the proposed control method.展开更多
This paper proposes a discrete-time robust control technique for an uncertain nonlinear system. The uncertainty mainly affects the system dynamics due to mismatched parameter variation which is bounded by a predefined...This paper proposes a discrete-time robust control technique for an uncertain nonlinear system. The uncertainty mainly affects the system dynamics due to mismatched parameter variation which is bounded by a predefined known function. In order to compensate the effect of uncertainty, a robust control input is derived by formulating an equivalent optimal control problem for a virtual nominal system with a modified costfunctional. To derive the stabilizing control law for a mismatched system, this paper introduces another control input named as virtual input. This virtual input is not applied directly to stabilize the uncertain system, rather it is used to define a sufficient condition. To solve the nonlinear optimal control problem, a discretetime general Hamilton-Jacobi-Bellman(DT-GHJB) equation is considered and it is approximated numerically through a neural network(NN) implementation. The approximated solution of DTGHJB is used to compute the suboptimal control input for the virtual system. The suboptimal inputs for the virtual system ensure the asymptotic stability of the closed-loop uncertain system. A numerical example is illustrated with simulation results to prove the efficacy of the proposed control algorithm.展开更多
Regarding to the problems that supercavitating vehicles have special characteristics from traditional underwater vehicles,robust control problem was studied in this paper for the supercavitating vehicles with mismatch...Regarding to the problems that supercavitating vehicles have special characteristics from traditional underwater vehicles,robust control problem was studied in this paper for the supercavitating vehicles with mismatched uncertainties.The nonlinear dynamic model was improved.For mismatched uncertainties,the robust sliding mode function was proposed based on guaranteed cost theory,and sufficient condition for the existence was given in terms of linear matrix inequality (LMI).Continuous sliding mode controller was designed,with an adaptive technology which was used to estimate the unknown upper bound of mismatched uncertainties.Meanwhile,upper bound of parameter uncertainties was not required.Simulation results demonstrated that the system responds rapidly and has good robust stability.Due to application of guaranteed cost theory,the controlled plant is not only stable but also guarantees an adequate level of performance.Therefore,it provides theoretical references for further study on control problems of supercavitating vehicles.展开更多
基金supported in part by the National Basic Research Program of China(973 Program)(61334)
文摘A linear matrix inequality (LMI)-based sliding surface design method for integral sliding mode control of uncertain time- delay systems with mismatching uncertainties is proposed. The uncertain time-delay system under consideration may have mis- matching norm bounded uncertainties in the state matrix as well as the input matrix, A sufficient condition for the existence of a sliding surface is given to guarantee asymptotic stability of the full order slJdJng mode dynamics. An LMI characterization of the slid- ing surface is given, together with an integral sliding mode control law guaranteeing the existence of a sliding mode from the initial time. Finally, a simulation is given to show the effectiveness of the proposed method.
文摘In order to solve the mismatched uncertainties of a class of nonlinearsystems, a control method of sliding mode control (SMC) based on the backstepping design isproposed. It introduces SMC in to the last step of backstepping design to modify the backsteppingalgorithm. This combination not only enables the generalization of the backstepping design to beapplied to more general nonlinear systems, but also makes the SMC method become effective in solvingthe mismatched uncertainties. The SMC based on the backstepping design is applied to the flightcontrol system design of an aerodynamic missile. The control system is researched throughsimulation. The simulation results show the effectiveness of the proposed control method.
文摘This paper proposes a discrete-time robust control technique for an uncertain nonlinear system. The uncertainty mainly affects the system dynamics due to mismatched parameter variation which is bounded by a predefined known function. In order to compensate the effect of uncertainty, a robust control input is derived by formulating an equivalent optimal control problem for a virtual nominal system with a modified costfunctional. To derive the stabilizing control law for a mismatched system, this paper introduces another control input named as virtual input. This virtual input is not applied directly to stabilize the uncertain system, rather it is used to define a sufficient condition. To solve the nonlinear optimal control problem, a discretetime general Hamilton-Jacobi-Bellman(DT-GHJB) equation is considered and it is approximated numerically through a neural network(NN) implementation. The approximated solution of DTGHJB is used to compute the suboptimal control input for the virtual system. The suboptimal inputs for the virtual system ensure the asymptotic stability of the closed-loop uncertain system. A numerical example is illustrated with simulation results to prove the efficacy of the proposed control algorithm.
基金Sponsored by the Research Fund for the Doctoral Program of Higher Education of China(Grant No. 200802130003)the National Natural Science Foundation of China(Grant No. 10802026)
文摘Regarding to the problems that supercavitating vehicles have special characteristics from traditional underwater vehicles,robust control problem was studied in this paper for the supercavitating vehicles with mismatched uncertainties.The nonlinear dynamic model was improved.For mismatched uncertainties,the robust sliding mode function was proposed based on guaranteed cost theory,and sufficient condition for the existence was given in terms of linear matrix inequality (LMI).Continuous sliding mode controller was designed,with an adaptive technology which was used to estimate the unknown upper bound of mismatched uncertainties.Meanwhile,upper bound of parameter uncertainties was not required.Simulation results demonstrated that the system responds rapidly and has good robust stability.Due to application of guaranteed cost theory,the controlled plant is not only stable but also guarantees an adequate level of performance.Therefore,it provides theoretical references for further study on control problems of supercavitating vehicles.
基金This work was supported by the National Natural Science Foundation of China (51307076), and the Provincial Natural Science Foundation of Liaoning (201602350).