期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Effect of Quercetin on the Proliferation and Mitochondrial Transmembrane Potential of CBRH-7919 Cells 被引量:1
1
作者 马朋 曹同涛 +2 位作者 于敏 闫苗苗 牛新华 《Agricultural Science & Technology》 CAS 2012年第2期245-247,共3页
[Objective] To investigate the effect of quercetin on the proliferation and mitochondrial transmembrane potential of CBRH-7919 cells. [Method] The CBRH-7919 cells of hepatocarcinoma were cultured in vitro. After treat... [Objective] To investigate the effect of quercetin on the proliferation and mitochondrial transmembrane potential of CBRH-7919 cells. [Method] The CBRH-7919 cells of hepatocarcinoma were cultured in vitro. After treated with different concentrations of quercetin, the OD405 nm of CBRH-7919 cells was detected by using the acid phosphatase assy (APA); morphologic changes of the cells were observed under inverted microscope; the mitochondrial transmembrane potential (△ψm) intensity changes of CBRH-7919 cells were analyzed by flow cytometry after stained with Rhodamine 123. [Result] Quercetin inhibited the proliferation of CBRH-7919 cells significantly, and the growth inhibitory effect presented time- and dose-dependent relationship. Typical decrease of cell density was observed by optical microscopy on the quercetin-treated cells. With the effect of 10 μg/ml quercetin on CBRH-7919 cells for 12, 24 and 48 h, the percentage of Rhodamine 123 stained hypofluorescence cells increased, while the mitochondrial transmembrane potential(△ψm) intensity of CBRH-7919 cells decreased. [Conclusion] Quercetin could inhibit the proliferation of CBRH-7919 cells in vitro, causing the decrease in mitochondrial transmembrane potential. 展开更多
关键词 QUERCETIN HEPATOCARCINOMA mitochondrial transmembrane potential
下载PDF
Effect of rhTNF-α on Mitochondrial Transmembrane Potential and Motility of Human Sperm in vitro by Flow Cytometry and Computer Aided of Semen Analysis 被引量:1
2
作者 Jiang BIAN Wei CHEN +3 位作者 Xian-kun GUO Cheng-liang XIONG Yan ZHANG Yong NEP 《Journal of Reproduction and Contraception》 CAS 2005年第2期89-98,共10页
To evaluate effect of recombined human tumor necrosis factor (rhTNF- α) on mitochondrial transmembrane potential and motility of human sperm in vitro Methods Semen samples for study were obtained from 40 health men... To evaluate effect of recombined human tumor necrosis factor (rhTNF- α) on mitochondrial transmembrane potential and motility of human sperm in vitro Methods Semen samples for study were obtained from 40 health men (average age 26 ± 1.2 years) with normal semen analysis. Sperm suspension with computer aided of semen analysis (CASA) technique; 2) were stained in the presence of 10 μg/ml Rh123 and PI, mitochondrial transmembrane potential of those was analyzed by flow cytometry (FCM). Results Significant differences were found between experimental groups and control groups on viability, straight line velocity, curvilinear velocity, average path velocity, progressive motility of human sperm and number of sperm with normal mitochondrial transmembrane potential (P〈0.01) expect final concentration 30 pg/ml group (P〉0. 05). Sperm motility lowed with increasing rhTNF-α concentration and incubating time (P〈0. 01). Number of sperm with normal mitochondrial transmembrane potential decreased with increasing rhTNF-α concentration and incubating time (P〈0.01). Conclusion rh TNF-α can decrease human sperm motility function in vitro, which can interfere the function of human sperm mitochondrial transmembrane potential and may inhibit sperm mitochondrial enzymatic activities. 展开更多
关键词 HUMAN SPERM mitochondrial transmembrane potential RHTNF-Α
下载PDF
Restoration of Mitochondrial Structure and Function within Helicobacter pylori VacA Intoxicated Cells
3
作者 Robin L. Holland Kristopher D. Bosi +1 位作者 Ami Y. Seeger Steven R. Blanke 《Advances in Microbiology》 2023年第8期399-419,共21页
The Helicobacter pylori vacuolating cytotoxin (VacA) is an intracellular, mitochondrial-targeting exotoxin that rapidly causes mitochondrial dysfunction and fragmentation. Although VacA targeting of mitochondria has b... The Helicobacter pylori vacuolating cytotoxin (VacA) is an intracellular, mitochondrial-targeting exotoxin that rapidly causes mitochondrial dysfunction and fragmentation. Although VacA targeting of mitochondria has been reported to alter overall cellular metabolism, there is little known about the consequences of extended exposure to the toxin. Here, we describe studies to address this gap in knowledge, which have revealed that mitochondrial dysfunction and fragmentation are followed by a time-dependent recovery of mitochondrial structure, mitochondrial transmembrane potential, and cellular ATP levels. Cells exposed to VacA also initially demonstrated a reduction in oxidative phosphorylation, as well as increase in compensatory aerobic glycolysis. These metabolic alterations were reversed in cells with limited toxin exposure, congruent with the recovery of mitochondrial transmembrane potential and the absence of cytochrome c release from the mitochondria. Taken together, these results are consistent with a model that mitochondrial structure and function are restored in VacA-intoxicated cells. 展开更多
关键词 Helicobacter pylori VACA Vacuolating Cytotoxin MITOCHONDRIA mitochondrial Dysfunction mitochondrial Fission mitochondrial transmembrane potential ATP mitochondrial Dynamics Oxidative Phosphorylation
下载PDF
Scutellaria barbate extract induces apoptosis of hepatoma H22 cells via the mitochondrial pathway involving caspase-3 被引量:25
4
作者 Zhi-Jun Dai Xi-Jing Wang +7 位作者 Zong-Fang Li Zong-Zheng Ji Hong-Tao Ren Wei Tang Xiao-Xu Liu Hua-Feng Kang Hai-Tao Guan Ling-Qin Song 《World Journal of Gastroenterology》 SCIE CAS CSCD 2008年第48期7321-7328,共8页
AIM: To study the growth inhibitory and apoptotic effects of Scutellaria barbata D.Don (S. barbata) and to determine the underlying mechanism of its antiturnor activity in mouse liver cancer cell line H22.METHODS:... AIM: To study the growth inhibitory and apoptotic effects of Scutellaria barbata D.Don (S. barbata) and to determine the underlying mechanism of its antiturnor activity in mouse liver cancer cell line H22.METHODS: Proliferation of H22 cells was examined by MTT assay. Cellular morphology of PC-2 cells was observed under fluorescence microscope and transmission electron microscope (EM). Mitochondrial transmembrane potential was determined under laser scanning confocal microscope (LSCM) with rhodamine 123 staining. Flow cytometry was performed to analyze the cell cycle of H22 cells with propidium iodide staining. Protein level of cytochrome C and caspase-3 was measured by semi-quantitive RT-PCR and Western blot analysis. Activity of caspase-3 enzyme was measured by spectrofluorometrv.RESULTS: M-I-I- assay showed that extracts from S. barbata (ESB) could inhibit the proliferation of H22 cells in a time-dependent manner. Among the various phasesof cell cycle, the percentage of cells in S phase was significantly decreased, while the percentage of cells in G1 phase was increased. Flow cytometry assay also showed that ESB had a positive effect on apoptosis. Typical apoptotic morphologies such as condensation and fragmentation of nuclei and blebbing membrane of apoptotic cells could be observed under transmission electron microscope and fluorescence microscope. To further investige the molecular mechanism behind ESB-induced apoptosis, ESB-treated cells rapidly lost their mitochondrial transmembrane potential, released mitochondrial cytochrome C into cytosol, and induced caspase-3 activity in a dose-dependent manner. CONCLUSION: ESB can effectively inhibit the proliferation and induce apoptosis of H22 cells involving loss of mitochondrial transmembrane potential, release of cytochrome C, and activation of caspase-3. 展开更多
关键词 Scute/laria barbate HEPATOMA APOPTOSIS mitochondrial transmembrane potential Serum pha-rmacology
下载PDF
Puerarin prevents high glucose-induced apoptosis of Schwann cells by inhibiting oxidative stress 被引量:10
5
作者 Yingying Wu Bing Xue +1 位作者 Xiaojin Li Hongchen Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第33期2583-2591,共9页
Oxidative stress may be the unifying factor for the injury caused by hyperglycemia in diabetic peripheral neuropathy. Puerarin is the major isoflavonoid derived from Radix puerariae and has been shown to be effective ... Oxidative stress may be the unifying factor for the injury caused by hyperglycemia in diabetic peripheral neuropathy. Puerarin is the major isoflavonoid derived from Radix puerariae and has been shown to be effective in increasing superoxide dismutase activity. This study sought to investigate the neuroprotective effect of puerarin on high glucose-induced oxidative stress and Schwann cell apoptosis in vitro. Intracellular reactive oxygen radicals and mitochondrial transmembrane potential were detected by flow cytometry analysis. Apoptosis was confirmed by TUNEL and oxidative stress was monitored using an enzyme-linked immunosorbent assay for the DNA marker 8-hydroxy-2-deoxyguanosine. The expression levels of bax and bcl-2 were analyzed by quantitative real-time reverse transcriptase-PCR, while protein expression of cleaved caspase-3 and -9 were analyzed by means of western blotting. Results suggested that puerarin treatment inhibited high glucose-induced oxidative stress, mitochondrial depolarization and apoptosis in a dose-dependent manner. Furthermore, puerarin treatment downregulated Bax expression, upregulated bcl-2 expression and attenuated the activation of caspase-3 and -9. Overall, our results indicated that puerarin antagonized high glucose-induced oxidative stress and apoptosis in Schwann cells. 展开更多
关键词 PUERARIN diabetic peripheral neuropathy hyperglycemia Schwann cell apoptosis caspase mitochondrial transmembrane potential oxidative stress 8-hydroxy-2-deoxyguanosine reactive oxygen radical
下载PDF
Protective paracrine effect of mesenchymal stem cells on cardiomyocytes 被引量:7
6
作者 Mei-xiang XIANG Ai-na HE Jian-an WANG Chun GUI 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2009年第8期619-624,共6页
Objective: The aim of this study was to test the protective effect of mesenchymal stem cells (MSCs) on cardiomyocytes in vitro and to investigate the anti-apoptotic signaling pathway. Methods: MSCs from Sprague-Da... Objective: The aim of this study was to test the protective effect of mesenchymal stem cells (MSCs) on cardiomyocytes in vitro and to investigate the anti-apoptotic signaling pathway. Methods: MSCs from Sprague-Dawley (SD) rats were separated and cultured. MSC medium was collected from MSCs (DMEM) under hypoxia. Cultured cardiomyocytes from neonatal cultured in serum-free Dulbecco's modified eagle medium SD rats were exposed to hypoxia/reoxygenation (H/R) and treated with MSC medium. The apoptotic cardiomyocytes were stained with Annexin-V-fluorescein isothiocyanate (FITC), Hoechst 33342 and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL). The mitochondrial transmembrane potential of cardiomyocytes was assessed using a fluorescence microscope. The expression of Bcl-2, Bax, cyto- chrome C, apoptosis-induced factor (AIF), and caspase-3 was tested by Western blot analysis. Results: Our data demonstrated that MSC medium reduced H/R-induced cardiomyocyte apoptosis, increased the Bcl-2/Bax ratio, and reduced the release of cyto- chrome C and AIF from mitochondria into the cytosol. Conclusion: MSCs protected the cardiomyocytes from H/R-induced apoptosis through a mitochondrial pathway in a paracrine manner. 展开更多
关键词 Mesenchymal stem cell (MSC) APOPTOSIS mitochondrial transmembrane potential Hvpoxia/reoxygenation (H/R)
原文传递
Pachymic acid, a novel compound for anti-rejection: effect in rats following cardiac allograft transplantation 被引量:5
7
作者 ZHANG Fan ZHANG Xue-feng WANG Bai-chun LIU Hong-yu LI Chun-yu LIU Zong-hong ZHANG Guo-wei LU Hang CHI Chao WANG Fei 《Chinese Medical Journal》 SCIE CAS CSCD 2009年第23期2898-2902,共5页
Background Pachymic acid (PA), a natural triterpenoid, is known to significantly reduce cell proliferation and induce apoptosis in vitro through initiation of mitochondria dysfunction. However, its effect on immune ... Background Pachymic acid (PA), a natural triterpenoid, is known to significantly reduce cell proliferation and induce apoptosis in vitro through initiation of mitochondria dysfunction. However, its effect on immune cells and anti-rejection following organ transplantation remains unknown. Methods In this study, we investigated PA as a treatment to control acute rejection occurred in rats which had accepted cardiac transplantation. We measured apoptosis of peripheral blood lymphocyte (PBLs), and CD4^+ lymphocyte, as well as the number of CD4^+ and CD8^+ lymphocytes and the effect of PA on acute rejection in rats 7 days after cardiac transplantation. Results PA treatment might decrease allograft rejection, protect PBLs from apoptosis, and reduce the percentage of CD8^+ lymphocyte. PA neither regulated the number nor the apoptosis rate of CD4^+ lymphocyte. Conclusions Our findings indicated that PA has an anti-apoptotic effect acting on PBLs through a novel mechanism involving stabilization of the PBLs mitochondrial transmembrane potential, an anti-rejection effect in rats after cardiac transplantation and an inhibiting effect to CD8^+ lymphocyte. 展开更多
关键词 pachymic acid mitochondrial transmembrane potential APOPTOSIS ANTI-REJECTION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部