Recent studies have revealed that lipid droplets accumulate in neurons after brain injury and evoke lipotoxicity,damaging the neurons.However,how lipids are metabolized by spinal cord neurons after spinal cord injury ...Recent studies have revealed that lipid droplets accumulate in neurons after brain injury and evoke lipotoxicity,damaging the neurons.However,how lipids are metabolized by spinal cord neurons after spinal cord injury remains unclear.Herein,we investigated lipid metabolism by spinal cord neurons after spinal cord injury and identified lipid-lowering compounds to treat spinal cord injury.We found that lipid droplets accumulated in perilesional spinal cord neurons after spinal cord injury in mice.Lipid droplet accumulation could be induced by myelin debris in HT22 cells.Myelin debris degradation by phospholipase led to massive free fatty acid production,which increased lipid droplet synthesis,β-oxidation,and oxidative phosphorylation.Excessive oxidative phosphorylation increased reactive oxygen species generation,which led to increased lipid peroxidation and HT22 cell apoptosis.Bromocriptine was identified as a lipid-lowering compound that inhibited phosphorylation of cytosolic phospholipase A2 by reducing the phosphorylation of extracellular signal-regulated kinases 1/2 in the mitogen-activated protein kinase pathway,thereby inhibiting myelin debris degradation by cytosolic phospholipase A2 and alleviating lipid droplet accumulation in myelin debris-treated HT22 cells.Motor function,lipid droplet accumulation in spinal cord neurons and neuronal survival were all improved in bromocriptine-treated mice after spinal cord injury.The results suggest that bromocriptine can protect neurons from lipotoxic damage after spinal cord injury via the extracellular signal-regulated kinases 1/2-cytosolic phospholipase A2 pathway.展开更多
BACKGROUND Metabolic reprogramming plays a key role in cancer progression and clinical outcomes;however,the patterns and primary regulators of metabolic reprogramming in colorectal cancer(CRC)are not well understood.A...BACKGROUND Metabolic reprogramming plays a key role in cancer progression and clinical outcomes;however,the patterns and primary regulators of metabolic reprogramming in colorectal cancer(CRC)are not well understood.AIM To explore the role of nicotinamide adenine dinucleotide phosphate oxidase 4(NOX4)in promoting progression of CRC.METHODS We evaluated the expression and function of dysregulated and survival-related metabolic genes using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes.Consensus clustering was used to cluster CRC based on dysregulated metabolic genes.A prediction model was constructed based on survival-related metabolic genes.Sphere formation,migration,invasion,proliferation,apoptosis and clone formation was used to evaluate the biological function of NOX4 in CRC.mRNA sequencing was utilized to explore the alterations of gene expression NOX4 over-expression tumor cells.In vivo subcutaneous and lung metastasis mouse tumor model was used to explore the effect of NOX4 on tumor growth.RESULTS We comprehensively analyzed 3341 metabolic genes in CRC and identified three clusters based on dysregulated metabolic genes.Among these genes,NOX4 was highly expressed in tumor tissues and correlated with worse survival.In vitro,NOX4 overexpression induced clone formation,migration,invasion,and stemness in CRC cells.Furthermore,RNA-sequencing analysis revealed that NOX4 overexpression activated the mitogen-activated protein kinase-MEK1/2-ERK1/2 signaling pathway.Trametinib,a MEK1/2 inhibitor,abolished the NOX4-mediated tumor progression.In vivo,NOX4 overexpression promoted subcutaneous tumor growth and lung metastasis,whereas trametinib treatment can reversed the metastasis.CONCLUSION Our study comprehensively analyzed metabolic gene expression and highlighted the importance of NOX4 in promoting CRC metastasis,suggesting that trametinib could be a potential therapeutic drugs of CRC clinical therapy targeting NOX4.展开更多
AIM:To investigate the phototoxic effect of long-term excessive narrow-band blue light in staurosporine-induced differentiated retinal ganglion cells-5(SSRGC-5).METHODS:SSRGC-5 cells were divided into two groups,blue ...AIM:To investigate the phototoxic effect of long-term excessive narrow-band blue light in staurosporine-induced differentiated retinal ganglion cells-5(SSRGC-5).METHODS:SSRGC-5 cells were divided into two groups,blue light group(BL group)and control group.Cell viability was assessed by using CCK-8 assay.Metabolic profile analysis was performed by using Seahorse extracellular flux analyzer.Mitochondria ultrastructure were studied via transmission electron microscope(TEM).Mitochondria contents and oxidative stress was evaluated by flow cytometry.Western blotting was performed to monitor the changes in mitogen-activated protein kinases(MAPK)pathway and PI3 K/AKT pathway.RESULTS:Blue light caused morphological changes of SSRGC-5 cells.The cell viability was significantly decreased from 3 h in BL group.Intercellular ROS and mitochondrial superoxide levels were increased following blue light exposure.Metabolic profiling identified blue light induced SSRGC-5 cells to have severely compromised mitochondrial function.This was accompanied by impaired mitochondrial ultrastructure and remodeling,increased expression of the mitochondrial related proteins,and increased glycolysis as compensation.Moreover,the results showed that blue light induced higher expression of p-p38,p38,p-JNK,p-ERK,p-cJun,c-Jun,and p-AKT.CONCLUSION:These findings indicate that excessive narrow-band blue light induces oxidative stress and mitochondrial metabolic remodeling dysregulate in SSRGC-5 cells.Activated MAPK and AKT signaling pathways are involved in this process.展开更多
基金supported by the National Natural Science Foundation of China,Nos.82071376(to ZC)and 82001471(to CJ)the Natural Science Foundation of Shanghai,No.20ZR1410500(to ZC).
文摘Recent studies have revealed that lipid droplets accumulate in neurons after brain injury and evoke lipotoxicity,damaging the neurons.However,how lipids are metabolized by spinal cord neurons after spinal cord injury remains unclear.Herein,we investigated lipid metabolism by spinal cord neurons after spinal cord injury and identified lipid-lowering compounds to treat spinal cord injury.We found that lipid droplets accumulated in perilesional spinal cord neurons after spinal cord injury in mice.Lipid droplet accumulation could be induced by myelin debris in HT22 cells.Myelin debris degradation by phospholipase led to massive free fatty acid production,which increased lipid droplet synthesis,β-oxidation,and oxidative phosphorylation.Excessive oxidative phosphorylation increased reactive oxygen species generation,which led to increased lipid peroxidation and HT22 cell apoptosis.Bromocriptine was identified as a lipid-lowering compound that inhibited phosphorylation of cytosolic phospholipase A2 by reducing the phosphorylation of extracellular signal-regulated kinases 1/2 in the mitogen-activated protein kinase pathway,thereby inhibiting myelin debris degradation by cytosolic phospholipase A2 and alleviating lipid droplet accumulation in myelin debris-treated HT22 cells.Motor function,lipid droplet accumulation in spinal cord neurons and neuronal survival were all improved in bromocriptine-treated mice after spinal cord injury.The results suggest that bromocriptine can protect neurons from lipotoxic damage after spinal cord injury via the extracellular signal-regulated kinases 1/2-cytosolic phospholipase A2 pathway.
基金Supported by Henan Province Medical Science and Technology Research Provincial and Ministry Co-constructed Projects,No.SBGJ202101010Major Public Welfare Projects in Henan Province,No.201300310400+1 种基金Joint Construction Project of Henan Medical Science and Technology Research Plan,No.LHGJ20220050Major Science and Technology Project of Henan Province,No.221100310100.
文摘BACKGROUND Metabolic reprogramming plays a key role in cancer progression and clinical outcomes;however,the patterns and primary regulators of metabolic reprogramming in colorectal cancer(CRC)are not well understood.AIM To explore the role of nicotinamide adenine dinucleotide phosphate oxidase 4(NOX4)in promoting progression of CRC.METHODS We evaluated the expression and function of dysregulated and survival-related metabolic genes using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes.Consensus clustering was used to cluster CRC based on dysregulated metabolic genes.A prediction model was constructed based on survival-related metabolic genes.Sphere formation,migration,invasion,proliferation,apoptosis and clone formation was used to evaluate the biological function of NOX4 in CRC.mRNA sequencing was utilized to explore the alterations of gene expression NOX4 over-expression tumor cells.In vivo subcutaneous and lung metastasis mouse tumor model was used to explore the effect of NOX4 on tumor growth.RESULTS We comprehensively analyzed 3341 metabolic genes in CRC and identified three clusters based on dysregulated metabolic genes.Among these genes,NOX4 was highly expressed in tumor tissues and correlated with worse survival.In vitro,NOX4 overexpression induced clone formation,migration,invasion,and stemness in CRC cells.Furthermore,RNA-sequencing analysis revealed that NOX4 overexpression activated the mitogen-activated protein kinase-MEK1/2-ERK1/2 signaling pathway.Trametinib,a MEK1/2 inhibitor,abolished the NOX4-mediated tumor progression.In vivo,NOX4 overexpression promoted subcutaneous tumor growth and lung metastasis,whereas trametinib treatment can reversed the metastasis.CONCLUSION Our study comprehensively analyzed metabolic gene expression and highlighted the importance of NOX4 in promoting CRC metastasis,suggesting that trametinib could be a potential therapeutic drugs of CRC clinical therapy targeting NOX4.
基金Supported by the National Natural Science Foundation of China(No.81670821,No.81400440)。
文摘AIM:To investigate the phototoxic effect of long-term excessive narrow-band blue light in staurosporine-induced differentiated retinal ganglion cells-5(SSRGC-5).METHODS:SSRGC-5 cells were divided into two groups,blue light group(BL group)and control group.Cell viability was assessed by using CCK-8 assay.Metabolic profile analysis was performed by using Seahorse extracellular flux analyzer.Mitochondria ultrastructure were studied via transmission electron microscope(TEM).Mitochondria contents and oxidative stress was evaluated by flow cytometry.Western blotting was performed to monitor the changes in mitogen-activated protein kinases(MAPK)pathway and PI3 K/AKT pathway.RESULTS:Blue light caused morphological changes of SSRGC-5 cells.The cell viability was significantly decreased from 3 h in BL group.Intercellular ROS and mitochondrial superoxide levels were increased following blue light exposure.Metabolic profiling identified blue light induced SSRGC-5 cells to have severely compromised mitochondrial function.This was accompanied by impaired mitochondrial ultrastructure and remodeling,increased expression of the mitochondrial related proteins,and increased glycolysis as compensation.Moreover,the results showed that blue light induced higher expression of p-p38,p38,p-JNK,p-ERK,p-cJun,c-Jun,and p-AKT.CONCLUSION:These findings indicate that excessive narrow-band blue light induces oxidative stress and mitochondrial metabolic remodeling dysregulate in SSRGC-5 cells.Activated MAPK and AKT signaling pathways are involved in this process.