Because of its economical and environmentally friendly characteristics, the warm mix asphalt(WMA) is widely used in pavement engineering. However, the lack of microscopic study of WMA brings difficulties in understand...Because of its economical and environmentally friendly characteristics, the warm mix asphalt(WMA) is widely used in pavement engineering. However, the lack of microscopic study of WMA brings difficulties in understanding of its mechanical behavior and mechanisms at macroscopic scale which finally hinders the enhancement of WMA's performance. Therefore, this article aims to use atomic force microscopy(AFM), a promising microscopic technique, to investigate the effects of wax-based warm mix agents on asphalt microstructures and micromechanical properties at different temperatures. For simplicity's sake, microcrystalline waxes are selected as an alternative of these wax-based additives. It is shown that the sample preparation method has a vital impact on the morphology of asphalt samples. The effects of microcrystalline wax on asphalt's mechanical properties can be well captured by AFM tests. Results show that the blending of #70, #80 and #90 microcrystalline waxes lowers the modulus(20—60 MPa) of Pen70 asphalt at 25 ℃ while increasing its adhesion force(5—20 n N). The results of this study may shed some light on the comprehension of the effects of wax-based additives on asphalt materials at macroscopic level which can help estimate and predict its actual performance.展开更多
为研究应用在蜡式温阀中的感温石蜡的调配规律,使用十八烷与二十烷以不同比例进行混合,测量每组样品的熔点,再对样品进行DTA(Different Temperature Analyse)差热分析。通过对物性测试和热分析的结果的综合分析,得到了感温石蜡的优化调...为研究应用在蜡式温阀中的感温石蜡的调配规律,使用十八烷与二十烷以不同比例进行混合,测量每组样品的熔点,再对样品进行DTA(Different Temperature Analyse)差热分析。通过对物性测试和热分析的结果的综合分析,得到了感温石蜡的优化调配规律。展开更多
基金financial support of the Education Department of Jiangsu Province under Grant No.JZ-007the Jiangsu Natural Science Foundation under Grant No.BK 20140111
文摘Because of its economical and environmentally friendly characteristics, the warm mix asphalt(WMA) is widely used in pavement engineering. However, the lack of microscopic study of WMA brings difficulties in understanding of its mechanical behavior and mechanisms at macroscopic scale which finally hinders the enhancement of WMA's performance. Therefore, this article aims to use atomic force microscopy(AFM), a promising microscopic technique, to investigate the effects of wax-based warm mix agents on asphalt microstructures and micromechanical properties at different temperatures. For simplicity's sake, microcrystalline waxes are selected as an alternative of these wax-based additives. It is shown that the sample preparation method has a vital impact on the morphology of asphalt samples. The effects of microcrystalline wax on asphalt's mechanical properties can be well captured by AFM tests. Results show that the blending of #70, #80 and #90 microcrystalline waxes lowers the modulus(20—60 MPa) of Pen70 asphalt at 25 ℃ while increasing its adhesion force(5—20 n N). The results of this study may shed some light on the comprehension of the effects of wax-based additives on asphalt materials at macroscopic level which can help estimate and predict its actual performance.