This paper considers the regularity of solutions to mixed boundary value problems in small-angle regions for elliptic equations. By constructing a specific barrier function, we proved that under the assumption of suff...This paper considers the regularity of solutions to mixed boundary value problems in small-angle regions for elliptic equations. By constructing a specific barrier function, we proved that under the assumption of sufficient regularity of boundary conditions and coefficients, as long as the angle is sufficiently small, the regularity of the solution to the mixed boundary value problem of the second-order elliptic equation can reach any order.展开更多
A novel symplectic superposition method has been proposed and developed for plate and shell problems in recent years.The method has yielded many new analytic solutions due to its rigorousness.In this study,the first e...A novel symplectic superposition method has been proposed and developed for plate and shell problems in recent years.The method has yielded many new analytic solutions due to its rigorousness.In this study,the first endeavor is made to further developed the symplectic superposition method for the free vibration of rectangular thin plates with mixed boundary constraints on an edge.The Hamiltonian system-based governing equation is first introduced such that the mathematical techniques in the symplectic space are applied.The solution procedure incorporates separation of variables,symplectic eigen solution and superposition.The analytic solution of an original problem is finally obtained by a set of equations via the equivalence to the superposition of some elaborated subproblems.The natural frequency and mode shape results for representative plates with both clamped and simply supported boundary constraints imposed on the same edge are reported for benchmark use.The present method can be extended to more challenging problems that cannot be solved by conventional analytic methods.展开更多
The analytical continuation method is adopted to solve a mixed electric boundary value problem for a piezoelectric medium under anti-plane deformation.The crack face is partly conductive and partly impermeable.The res...The analytical continuation method is adopted to solve a mixed electric boundary value problem for a piezoelectric medium under anti-plane deformation.The crack face is partly conductive and partly impermeable.The results show that the stress intensity factor is identical with the mode Ⅲ stress intensity factor independent of the conducting length.But the electric field and the electric displacement are dependent on the electric boundary conditions on the crack faces and are singular not only at the crack tips but also at the junctures between the impermeable part and conducting portions.展开更多
In this paper by using the concept of mixed boundary funetions, an analytical method is proposed for a mixed boundary value problem of circular plates. The trial functions are constructed by using the series of partic...In this paper by using the concept of mixed boundary funetions, an analytical method is proposed for a mixed boundary value problem of circular plates. The trial functions are constructed by using the series of particular solutions of the biharmonic equations in the polar coordinate system. Three examples are presented to show the stability and high convergence rate of the method.展开更多
The existence and multiplicity of positive solutions are studied for a class of quasi- linear elliptic equations involving Sobolev critical exponents with mixed Dirichlet-Neumann boundary conditions by the variational...The existence and multiplicity of positive solutions are studied for a class of quasi- linear elliptic equations involving Sobolev critical exponents with mixed Dirichlet-Neumann boundary conditions by the variational methods and some analytical techniques.展开更多
Mixed convection flow of magnetohydrodynamic(MHD) Jeffrey nanofluid over a radially stretching surface with radiative surface is studied. Radial sheet is considered to be convectively heated. Convective boundary condi...Mixed convection flow of magnetohydrodynamic(MHD) Jeffrey nanofluid over a radially stretching surface with radiative surface is studied. Radial sheet is considered to be convectively heated. Convective boundary conditions through heat and mass are employed. The governing boundary layer equations are transformed into ordinary differential equations. Convergent series solutions of the resulting problems are derived. Emphasis has been focused on studying the effects of mixed convection, thermal radiation, magnetic field and nanoparticles on the velocity, temperature and concentration fields. Numerical values of the physical parameters involved in the problem are computed for the local Nusselt and Sherwood numbers are computed.展开更多
In this paper, the author obtains an existence theorem of minimal and maximal solutions for the periodic boundary value problems of nonlinear impulsive integrodifferential equations of mixed type in Banach space by me...In this paper, the author obtains an existence theorem of minimal and maximal solutions for the periodic boundary value problems of nonlinear impulsive integrodifferential equations of mixed type in Banach space by means of the monotone iterative technique and cone theory based on a comparison result.展开更多
The paper is concerned with the multiplicity of solutions for some nonlinear elliptic equations involving critical Sobolev exponents and mixed boundary conditions.
Solutions of quasilinear mixed boundary problems for the some parabolic an elliptic partial differential equations are interpreted as solutions of a kind of backward stochastic differential equations, which are associ...Solutions of quasilinear mixed boundary problems for the some parabolic an elliptic partial differential equations are interpreted as solutions of a kind of backward stochastic differential equations, which are associated with the classical Ito forward stochastic differential equations with reflecting boundary conditions.展开更多
The unusual properties of quasicrystals(QCs)have attracted tremendous attention from researchers.In this paper,a semi-analytical solution is presented for the static response of a functionally graded(FG)multilayered t...The unusual properties of quasicrystals(QCs)have attracted tremendous attention from researchers.In this paper,a semi-analytical solution is presented for the static response of a functionally graded(FG)multilayered two-dimensional(2 D)decagonal QC rectangular plate with mixed boundary conditions.Based on the elastic theory of FG 2 D QCs,the state-space method is used to derive the state equations composed of partial differential along the thickness direction.Besides,the Fourier series expansion and the differential quadrature technique are utilized to simulate the simply supported boundary conditions and the mixed boundary conditions,respectively.Then,the propagator matrix which connects the field variables at the upper interface to those at the lower interface of any homogeneous layer can be derived based on the state equations.Combined with the interface continuity condition,the static response can be obtained by imposing the sinusoidal load on the top surfaces of laminates.Finally,the numerical examples are presented to verify the effectiveness of this method,and the results are very useful for the design and understanding of the characterization of FG QC materials in their applications to multilayered systems.展开更多
Let M be an n-dimensional compact Riemannian manifold with or without boundary,and its Ricci curvature Ric M≥n-1.The paper obtains an inequality for the first eigenvalue η 1 of M with mixed boundary condition,whic...Let M be an n-dimensional compact Riemannian manifold with or without boundary,and its Ricci curvature Ric M≥n-1.The paper obtains an inequality for the first eigenvalue η 1 of M with mixed boundary condition,which is a generalization of the results of Lichnerowicz,Reilly,Escobar and Xia.It is also proved that η 1≥n for certain n-dimensional compact Riemannian manifolds with boundary,which is an extension of the work of Cheng,Li and Yau.展开更多
In the poper, the method of separating singularity is applied to study the uniformly difference scheme of a singular perturbation problem for a semilinear ordinary differential equation with mixed boundary value condi...In the poper, the method of separating singularity is applied to study the uniformly difference scheme of a singular perturbation problem for a semilinear ordinary differential equation with mixed boundary value condition. The uniform convergence on small parameter ε of order one for an IVin type difference scheme constructed is proved. At the end of the paper, a numerical example is given. The computing results coincide with the theoretical analysis.展开更多
We consider the interior inverse scattering problem for recovering the shape of a penetrable partially coated cavity with external obstacles from the knowledge of measured scattered waves due to point sources.In the f...We consider the interior inverse scattering problem for recovering the shape of a penetrable partially coated cavity with external obstacles from the knowledge of measured scattered waves due to point sources.In the first part,we obtain the well-posedness of the direct scattering problem by the variational method.In the second part,we establish the mathematical basis of the linear sampling method to recover both the shape of the cavity,and the shape of the external obstacle,however the exterior transmission eigenvalue problem also plays a key role in the discussion of this paper.展开更多
In this study,the dynamic response of an elastically connected multi-beam structure subjected to a moving load with elastic boundary conditions is investigated.The boundary conditions and properties of each beam vary,...In this study,the dynamic response of an elastically connected multi-beam structure subjected to a moving load with elastic boundary conditions is investigated.The boundary conditions and properties of each beam vary,and the difficulty of solving the motion equation is reduced by using a Fourier series plus three special transformations.By examining a high-speed railway(HSR)with mixed boundary conditions,the rationality for the newly proposed method is verified,the difference in simulated multiple-beam models with different beam numbers is explored,and the influence of material parameters and load speed on the dynamic response of multiple-beam structures is examined.Results suggest that the number of beams in the model should be as close to the actual beam number as possible.Models with an appropriate beam number can be used to describe in detail the dynamic response of the structure.Neglecting the track-structure can overestimate the resonant speed of a high-speed railway,simply-supported beam bridge.The effective interval of foundation stiffness(EIFS)can provide a reference for future engineering designs.展开更多
In this paper we discuss the mixed boundary problem (1)-(3) of the NavierStokes equations for the flow of an incompressible viscous fluid in a bounded domain. we prove that when g,and,there exists a weak solution of (...In this paper we discuss the mixed boundary problem (1)-(3) of the NavierStokes equations for the flow of an incompressible viscous fluid in a bounded domain. we prove that when g,and,there exists a weak solution of (1)-(3),and when u,the weak solution is unique,if it exists.展开更多
This paper presents an overview of the recent progress of potential theory method in the analysis of mixed boundary value problems mainly stemming from three-dimensional crack or contact problems of multi-field couple...This paper presents an overview of the recent progress of potential theory method in the analysis of mixed boundary value problems mainly stemming from three-dimensional crack or contact problems of multi-field coupled media. This method was used to derive a series of exact three dimensional solutions which should be of great theoretical significance because most of them usually cannot be derived by other methods such as the transform method and the trial-and-error method. Further, many solutions are obtained in terms of elementary functions that enable us to treat more complicated problems easily. It is pointed out here that the method is usually only applicable to media characterizing transverse isotropy, from which, however, the results for the isotropic case can be readily obtained.展开更多
This paper deals with a class of doubly degenerate parabolic equations, including as particular cases the porous medium equation and the degenerate pLaplace equation (p 〉 2)ut-div(b(x,t,u)|↓△u|^p-2↓△u)=f...This paper deals with a class of doubly degenerate parabolic equations, including as particular cases the porous medium equation and the degenerate pLaplace equation (p 〉 2)ut-div(b(x,t,u)|↓△u|^p-2↓△u)=f(x,u,t)The initial-boundary value problem in a bounded domain of R^N is considered under mixed boundary conditions. The existence of local-in-time weak solutions is obtained.展开更多
In this paper, we prove the existence in H+^2, an incomplete metric subspace of H^2×H^2×H^2, of global solutions to the system for a one-dimensional non-monotone fluid in bounded domainΩ=(0,1). The resul...In this paper, we prove the existence in H+^2, an incomplete metric subspace of H^2×H^2×H^2, of global solutions to the system for a one-dimensional non-monotone fluid in bounded domainΩ=(0,1). The results in this paper have improved those previously related results.展开更多
We consider a one-dimensional continuous model of nutron star, described by a compressible thermoviscoelastic system with a non-monotone equation of state, due to the effective Skyrme nuclear interaction between parti...We consider a one-dimensional continuous model of nutron star, described by a compressible thermoviscoelastic system with a non-monotone equation of state, due to the effective Skyrme nuclear interaction between particles. We will prove that, despite a possible destabilizing influence of the pressure, which is non-monotone and not always positive, the presence of viscosity and a sufficient thermal dissipation describe the global existence of solutions in H^4 with a mixed free boundary problem for our model.展开更多
The Stroh formalism is most elegant when the boundary conditions are simple, namely,they are prescribed in terms of traction or displacement.For mixed boundary conditions such as there for a slippery boundary,the conc...The Stroh formalism is most elegant when the boundary conditions are simple, namely,they are prescribed in terms of traction or displacement.For mixed boundary conditions such as there for a slippery boundary,the concise matrix expressions of the Stroh formalism are destroyed.We present a generalized Stroh formalism which is applicable to a class of general boundary conditions.The general boundary conditions in- clude the simple and slippery boundary conditions as special cases.For Green's functions for the half space, the general solution is applicable to the case when the surface of the half-space is a fixed,a free,a slippery, or other more general boundary.For the Griffith crack in the infinite space,the crack can be a slit-like crack with free surfaces,a rigid line inclusion(which is sometimes called an anticrack),or a rigid line with slippery surface or with other general surface conditions.It is worth mention that the modifications required on the Stroh formalism are minor.The generalized formalism and the final solutions look very similar to those of unmodified version.Yet the results are applicable to a rather wide range of boundary conditions.展开更多
文摘This paper considers the regularity of solutions to mixed boundary value problems in small-angle regions for elliptic equations. By constructing a specific barrier function, we proved that under the assumption of sufficient regularity of boundary conditions and coefficients, as long as the angle is sufficiently small, the regularity of the solution to the mixed boundary value problem of the second-order elliptic equation can reach any order.
基金the support from the National Natural Science Foundation of China(Grants 12022209,11972103,and 11825202)the Liaoning Revitalization Talents Program of China(Grant XLYC1807126)the Fundamental Research Funds for the Central Universities(Grant DUT21LAB124).
文摘A novel symplectic superposition method has been proposed and developed for plate and shell problems in recent years.The method has yielded many new analytic solutions due to its rigorousness.In this study,the first endeavor is made to further developed the symplectic superposition method for the free vibration of rectangular thin plates with mixed boundary constraints on an edge.The Hamiltonian system-based governing equation is first introduced such that the mathematical techniques in the symplectic space are applied.The solution procedure incorporates separation of variables,symplectic eigen solution and superposition.The analytic solution of an original problem is finally obtained by a set of equations via the equivalence to the superposition of some elaborated subproblems.The natural frequency and mode shape results for representative plates with both clamped and simply supported boundary constraints imposed on the same edge are reported for benchmark use.The present method can be extended to more challenging problems that cannot be solved by conventional analytic methods.
基金Project supported by the National Natural Science Foundation of China (Nos.10072033 and 10132010).
文摘The analytical continuation method is adopted to solve a mixed electric boundary value problem for a piezoelectric medium under anti-plane deformation.The crack face is partly conductive and partly impermeable.The results show that the stress intensity factor is identical with the mode Ⅲ stress intensity factor independent of the conducting length.But the electric field and the electric displacement are dependent on the electric boundary conditions on the crack faces and are singular not only at the crack tips but also at the junctures between the impermeable part and conducting portions.
基金Partially Supported by the National Natural Science Foundation of China
文摘In this paper by using the concept of mixed boundary funetions, an analytical method is proposed for a mixed boundary value problem of circular plates. The trial functions are constructed by using the series of particular solutions of the biharmonic equations in the polar coordinate system. Three examples are presented to show the stability and high convergence rate of the method.
基金Supported by National Natural Science Foundation of China (11071198 11101347)+2 种基金Postdoctor Foundation of China (2012M510363)the Key Project in Science and Technology Research Plan of the Education Department of Hubei Province (D20112605 D20122501)
文摘The existence and multiplicity of positive solutions are studied for a class of quasi- linear elliptic equations involving Sobolev critical exponents with mixed Dirichlet-Neumann boundary conditions by the variational methods and some analytical techniques.
文摘Mixed convection flow of magnetohydrodynamic(MHD) Jeffrey nanofluid over a radially stretching surface with radiative surface is studied. Radial sheet is considered to be convectively heated. Convective boundary conditions through heat and mass are employed. The governing boundary layer equations are transformed into ordinary differential equations. Convergent series solutions of the resulting problems are derived. Emphasis has been focused on studying the effects of mixed convection, thermal radiation, magnetic field and nanoparticles on the velocity, temperature and concentration fields. Numerical values of the physical parameters involved in the problem are computed for the local Nusselt and Sherwood numbers are computed.
文摘In this paper, the author obtains an existence theorem of minimal and maximal solutions for the periodic boundary value problems of nonlinear impulsive integrodifferential equations of mixed type in Banach space by means of the monotone iterative technique and cone theory based on a comparison result.
文摘The paper is concerned with the multiplicity of solutions for some nonlinear elliptic equations involving critical Sobolev exponents and mixed boundary conditions.
文摘Solutions of quasilinear mixed boundary problems for the some parabolic an elliptic partial differential equations are interpreted as solutions of a kind of backward stochastic differential equations, which are associated with the classical Ito forward stochastic differential equations with reflecting boundary conditions.
基金Project supported by the National Natural Science Foundation of China(Nos.11972354,11972365,12102458)the China Agricultural University Education Foundation(No.1101-2412001)。
文摘The unusual properties of quasicrystals(QCs)have attracted tremendous attention from researchers.In this paper,a semi-analytical solution is presented for the static response of a functionally graded(FG)multilayered two-dimensional(2 D)decagonal QC rectangular plate with mixed boundary conditions.Based on the elastic theory of FG 2 D QCs,the state-space method is used to derive the state equations composed of partial differential along the thickness direction.Besides,the Fourier series expansion and the differential quadrature technique are utilized to simulate the simply supported boundary conditions and the mixed boundary conditions,respectively.Then,the propagator matrix which connects the field variables at the upper interface to those at the lower interface of any homogeneous layer can be derived based on the state equations.Combined with the interface continuity condition,the static response can be obtained by imposing the sinusoidal load on the top surfaces of laminates.Finally,the numerical examples are presented to verify the effectiveness of this method,and the results are very useful for the design and understanding of the characterization of FG QC materials in their applications to multilayered systems.
基金Research supported by the National Natural Science Foundation of China( 1 0 2 31 0 1 0 ) Trans- CenturyTraining Programme Foundation for Talents by the Ministry of Education of ChinaNatural ScienceFoundation of Zhejiang provinc
文摘Let M be an n-dimensional compact Riemannian manifold with or without boundary,and its Ricci curvature Ric M≥n-1.The paper obtains an inequality for the first eigenvalue η 1 of M with mixed boundary condition,which is a generalization of the results of Lichnerowicz,Reilly,Escobar and Xia.It is also proved that η 1≥n for certain n-dimensional compact Riemannian manifolds with boundary,which is an extension of the work of Cheng,Li and Yau.
文摘In the poper, the method of separating singularity is applied to study the uniformly difference scheme of a singular perturbation problem for a semilinear ordinary differential equation with mixed boundary value condition. The uniform convergence on small parameter ε of order one for an IVin type difference scheme constructed is proved. At the end of the paper, a numerical example is given. The computing results coincide with the theoretical analysis.
基金supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region of China(2019D01A05)supported by the NSFC(11571132)。
文摘We consider the interior inverse scattering problem for recovering the shape of a penetrable partially coated cavity with external obstacles from the knowledge of measured scattered waves due to point sources.In the first part,we obtain the well-posedness of the direct scattering problem by the variational method.In the second part,we establish the mathematical basis of the linear sampling method to recover both the shape of the cavity,and the shape of the external obstacle,however the exterior transmission eigenvalue problem also plays a key role in the discussion of this paper.
基金Supported by:National Natural Science Foundations of China under Grant Nos.U1934207 and 51778630the Hunan Innovative Provincial Construction Project under Grant No.2019RS3009+1 种基金the Innovation-driven Plan in Central South University under Grant No.2020zzts159the Fundamental Research Funds for the Central Universities of Central South University under Grant No.2018zzts189。
文摘In this study,the dynamic response of an elastically connected multi-beam structure subjected to a moving load with elastic boundary conditions is investigated.The boundary conditions and properties of each beam vary,and the difficulty of solving the motion equation is reduced by using a Fourier series plus three special transformations.By examining a high-speed railway(HSR)with mixed boundary conditions,the rationality for the newly proposed method is verified,the difference in simulated multiple-beam models with different beam numbers is explored,and the influence of material parameters and load speed on the dynamic response of multiple-beam structures is examined.Results suggest that the number of beams in the model should be as close to the actual beam number as possible.Models with an appropriate beam number can be used to describe in detail the dynamic response of the structure.Neglecting the track-structure can overestimate the resonant speed of a high-speed railway,simply-supported beam bridge.The effective interval of foundation stiffness(EIFS)can provide a reference for future engineering designs.
文摘In this paper we discuss the mixed boundary problem (1)-(3) of the NavierStokes equations for the flow of an incompressible viscous fluid in a bounded domain. we prove that when g,and,there exists a weak solution of (1)-(3),and when u,the weak solution is unique,if it exists.
基金Project (No. 10372088) supported by the National Natural Science Foundation of China
文摘This paper presents an overview of the recent progress of potential theory method in the analysis of mixed boundary value problems mainly stemming from three-dimensional crack or contact problems of multi-field coupled media. This method was used to derive a series of exact three dimensional solutions which should be of great theoretical significance because most of them usually cannot be derived by other methods such as the transform method and the trial-and-error method. Further, many solutions are obtained in terms of elementary functions that enable us to treat more complicated problems easily. It is pointed out here that the method is usually only applicable to media characterizing transverse isotropy, from which, however, the results for the isotropic case can be readily obtained.
基金The NSFC(10371050)and the"985"program of Jilin University.
文摘This paper deals with a class of doubly degenerate parabolic equations, including as particular cases the porous medium equation and the degenerate pLaplace equation (p 〉 2)ut-div(b(x,t,u)|↓△u|^p-2↓△u)=f(x,u,t)The initial-boundary value problem in a bounded domain of R^N is considered under mixed boundary conditions. The existence of local-in-time weak solutions is obtained.
文摘In this paper, we prove the existence in H+^2, an incomplete metric subspace of H^2×H^2×H^2, of global solutions to the system for a one-dimensional non-monotone fluid in bounded domainΩ=(0,1). The results in this paper have improved those previously related results.
文摘We consider a one-dimensional continuous model of nutron star, described by a compressible thermoviscoelastic system with a non-monotone equation of state, due to the effective Skyrme nuclear interaction between particles. We will prove that, despite a possible destabilizing influence of the pressure, which is non-monotone and not always positive, the presence of viscosity and a sufficient thermal dissipation describe the global existence of solutions in H^4 with a mixed free boundary problem for our model.
文摘The Stroh formalism is most elegant when the boundary conditions are simple, namely,they are prescribed in terms of traction or displacement.For mixed boundary conditions such as there for a slippery boundary,the concise matrix expressions of the Stroh formalism are destroyed.We present a generalized Stroh formalism which is applicable to a class of general boundary conditions.The general boundary conditions in- clude the simple and slippery boundary conditions as special cases.For Green's functions for the half space, the general solution is applicable to the case when the surface of the half-space is a fixed,a free,a slippery, or other more general boundary.For the Griffith crack in the infinite space,the crack can be a slit-like crack with free surfaces,a rigid line inclusion(which is sometimes called an anticrack),or a rigid line with slippery surface or with other general surface conditions.It is worth mention that the modifications required on the Stroh formalism are minor.The generalized formalism and the final solutions look very similar to those of unmodified version.Yet the results are applicable to a rather wide range of boundary conditions.