The decomposed process of bastnaesite, monazite and mixed rare earth concentrate in CaO-CaCl-CaCl2 was studied by means of TG-DTA method. The relationship among decomposition ratio, roasting temperature, and CaO-NaCl ...The decomposed process of bastnaesite, monazite and mixed rare earth concentrate in CaO-CaCl-CaCl2 was studied by means of TG-DTA method. The relationship among decomposition ratio, roasting temperature, and CaO-NaCl addition was studied by the quadratic regression orthogonal analysis, and then the regression equation was obtained. Through analysis, the optimum process conditions of mixed rare earth concentrate decomposed by CaO-CaCl-CaCl2 were obtained as follows: roasting temperature: 700℃, CaO addition: 15%, NaCl-CaCl2 addition: 10%, roasting time: 60 min, the decomposition ratio: 91.3%.展开更多
GC technology was used to study escaping fluorine in calcined process of mixed rare earth concentrate. The mixed rare earth concentrate and it adding assistant of CaO-NaCl-CaCl2 were calcined at 400~750 ℃ for 30~12...GC technology was used to study escaping fluorine in calcined process of mixed rare earth concentrate. The mixed rare earth concentrate and it adding assistant of CaO-NaCl-CaCl2 were calcined at 400~750 ℃ for 30~120 min, and then total amount of fluorine, exhausting ratio of fluorine, decomposition ratio and the component were determined. The results showed that adding CaO-NaCl-CaCl2 the decomposition ratio was up to 90% at 700 ℃ in 1 h, and the escaping ratio of fluorine decreased from 29.52% to 0.948%. The average inhabitation ratio was 98.39%. This method supplied basis for low energy and clean decomposition of mixed rare earth concentrate.展开更多
The loss of rare earths(REs)takes place during the pre-decalcification process of mixed rare earth concentrate.In an effort to reduce such RE loss,a novel idea to improve the leaching selectivity of Ca to REs by apply...The loss of rare earths(REs)takes place during the pre-decalcification process of mixed rare earth concentrate.In an effort to reduce such RE loss,a novel idea to improve the leaching selectivity of Ca to REs by applying selective mechanical activation was proposed.First,regarding the key minerals affecting the leaching selectivity of Ca to REs,the differences in the mechanical activation behaviors of CaF_(2) and REFCO_(3) were studied,and we find that the lattice strain of CaF_(2) increases from 0.21%to 0.42%,whereas that of REFCO_(3) increases from 0.31%to 0.40%.Notably,CaF_(2) demonstrates a larger lattice strain than REFCO_(3),indicating greater mechanical activation energy storage and higher leaching activity.Next,the HCl leaching process was studied.A significant leaching selectivity of Ca to REs,from 21.6 to 35.1,is achieved through mechanical activation.The Ca leaching rate reaches 80.7%when the RE loss is 2.3%in the activated sample.This study provides an novel approach for achieving selective extraction of specific components via mechanical activation pretreatment.展开更多
The process of decomposion of the bastnasite and monazite rare earth concentrates by alkali solutions was investigated. The mixed slurries of the rare earth concentrates and the alkali solutions were calcined at diffe...The process of decomposion of the bastnasite and monazite rare earth concentrates by alkali solutions was investigated. The mixed slurries of the rare earth concentrates and the alkali solutions were calcined at different temperatures in a rotary tubular electric furnace. The effects of calcination temperature on the decomposing ratio of rare earth, the oxidation ratio of cerium, the stripping of fluorine and phospho-rous after calcinations, and the adaptability of the process to the mixed rare earth concentrates of different grade were studied. The results showed that the decomposition ratio of rare earth and the oxidation ratio of cerium could reach 95.8% and 93.7%, respectively, while the cal-cinating temperature was above 300℃.展开更多
The gelation properties of polyol acetal derivatives including 2,4-(3,4-dichlorobenzylidene)-D-sorbitol(DCBS), 1,3:2,4-di(3,4-dichlorobenzylidene)-D-sorbitol(DDCBS) and 1,3:2,5:4,6-tris(3,4-dichlorobenzyli...The gelation properties of polyol acetal derivatives including 2,4-(3,4-dichlorobenzylidene)-D-sorbitol(DCBS), 1,3:2,4-di(3,4-dichlorobenzylidene)-D-sorbitol(DDCBS) and 1,3:2,5:4,6-tris(3,4-dichlorobenzylidene)-D-mannitol(TDCBM) in 35 single solvents and 39 binary solvent mixtures have been studied. FTIR and XRD results suggest that the self-assembly patterns of the gelator will not change in either the single solvent component or the corresponding solvent mixtures, but the critical gelation concentration(CGC)will be influenced. The results of SEM and rheology showed that the formation of true gels at saturated concentrations. Improving the heating temperature may promote the dissolving of gelators which are even insoluble at the temperature of the solvent boiling point and change the gelation behaviors. FloryHuggins parameter(x) was used to predict the gelation behavior of DCBS in the mixed solvents, and it is shown that the x values for the mixed solvents that can be gelled by DCBS are either greater or smaller than those for the selected good solvents.展开更多
基金Project supported by the National Natural Science Foundation of China (50574031)Scientific Research Special Foundation of Doctor Subject of Chinese University (20030145015)
文摘The decomposed process of bastnaesite, monazite and mixed rare earth concentrate in CaO-CaCl-CaCl2 was studied by means of TG-DTA method. The relationship among decomposition ratio, roasting temperature, and CaO-NaCl addition was studied by the quadratic regression orthogonal analysis, and then the regression equation was obtained. Through analysis, the optimum process conditions of mixed rare earth concentrate decomposed by CaO-CaCl-CaCl2 were obtained as follows: roasting temperature: 700℃, CaO addition: 15%, NaCl-CaCl2 addition: 10%, roasting time: 60 min, the decomposition ratio: 91.3%.
基金National Natural Science Foundation of China (50574031)
文摘GC technology was used to study escaping fluorine in calcined process of mixed rare earth concentrate. The mixed rare earth concentrate and it adding assistant of CaO-NaCl-CaCl2 were calcined at 400~750 ℃ for 30~120 min, and then total amount of fluorine, exhausting ratio of fluorine, decomposition ratio and the component were determined. The results showed that adding CaO-NaCl-CaCl2 the decomposition ratio was up to 90% at 700 ℃ in 1 h, and the escaping ratio of fluorine decreased from 29.52% to 0.948%. The average inhabitation ratio was 98.39%. This method supplied basis for low energy and clean decomposition of mixed rare earth concentrate.
基金Project supported by the National Natural Science Foundation of China(52004252)Natural Science Foundation ofHenan Province(222300420548)Strategic Research and Consulting Project of Chinese Academy of Engineering(2022-XBZD-07)。
文摘The loss of rare earths(REs)takes place during the pre-decalcification process of mixed rare earth concentrate.In an effort to reduce such RE loss,a novel idea to improve the leaching selectivity of Ca to REs by applying selective mechanical activation was proposed.First,regarding the key minerals affecting the leaching selectivity of Ca to REs,the differences in the mechanical activation behaviors of CaF_(2) and REFCO_(3) were studied,and we find that the lattice strain of CaF_(2) increases from 0.21%to 0.42%,whereas that of REFCO_(3) increases from 0.31%to 0.40%.Notably,CaF_(2) demonstrates a larger lattice strain than REFCO_(3),indicating greater mechanical activation energy storage and higher leaching activity.Next,the HCl leaching process was studied.A significant leaching selectivity of Ca to REs,from 21.6 to 35.1,is achieved through mechanical activation.The Ca leaching rate reaches 80.7%when the RE loss is 2.3%in the activated sample.This study provides an novel approach for achieving selective extraction of specific components via mechanical activation pretreatment.
基金Project supported by Key Scientific Projects of Baotou Science and Technology Bureau Intellectual Property (2010Z2003)
文摘The process of decomposion of the bastnasite and monazite rare earth concentrates by alkali solutions was investigated. The mixed slurries of the rare earth concentrates and the alkali solutions were calcined at different temperatures in a rotary tubular electric furnace. The effects of calcination temperature on the decomposing ratio of rare earth, the oxidation ratio of cerium, the stripping of fluorine and phospho-rous after calcinations, and the adaptability of the process to the mixed rare earth concentrates of different grade were studied. The results showed that the decomposition ratio of rare earth and the oxidation ratio of cerium could reach 95.8% and 93.7%, respectively, while the cal-cinating temperature was above 300℃.
基金the financial support of the National Natural Science Foundation of China(No. 21476164)Tianjin Science and Technology Innovation Platform Program(No. 14TXGCCX00017)
文摘The gelation properties of polyol acetal derivatives including 2,4-(3,4-dichlorobenzylidene)-D-sorbitol(DCBS), 1,3:2,4-di(3,4-dichlorobenzylidene)-D-sorbitol(DDCBS) and 1,3:2,5:4,6-tris(3,4-dichlorobenzylidene)-D-mannitol(TDCBM) in 35 single solvents and 39 binary solvent mixtures have been studied. FTIR and XRD results suggest that the self-assembly patterns of the gelator will not change in either the single solvent component or the corresponding solvent mixtures, but the critical gelation concentration(CGC)will be influenced. The results of SEM and rheology showed that the formation of true gels at saturated concentrations. Improving the heating temperature may promote the dissolving of gelators which are even insoluble at the temperature of the solvent boiling point and change the gelation behaviors. FloryHuggins parameter(x) was used to predict the gelation behavior of DCBS in the mixed solvents, and it is shown that the x values for the mixed solvents that can be gelled by DCBS are either greater or smaller than those for the selected good solvents.