Crown width(CW)is one of the most important tree metrics,but obtaining CW data is laborious and timeconsuming,particularly in natural forests.The Deep Learning(DL)algorithm has been proposed as an alternative to tradi...Crown width(CW)is one of the most important tree metrics,but obtaining CW data is laborious and timeconsuming,particularly in natural forests.The Deep Learning(DL)algorithm has been proposed as an alternative to traditional regression,but its performance in predicting CW in natural mixed forests is unclear.The aims of this study were to develop DL models for predicting tree CW of natural spruce-fir-broadleaf mixed forests in northeastern China,to analyse the contribution of tree size,tree species,site quality,stand structure,and competition to tree CW prediction,and to compare DL models with nonlinear mixed effects(NLME)models for their reliability.An amount of total 10,086 individual trees in 192 subplots were employed in this study.The results indicated that all deep neural network(DNN)models were free of overfitting and statistically stable within 10-fold cross-validation,and the best DNN model could explain 69%of the CW variation with no significant heteroskedasticity.In addition to diameter at breast height,stand structure,tree species,and competition showed significant effects on CW.The NLME model(R^(2)=0.63)outperformed the DNN model(R^(2)=0.54)in predicting CW when the six input variables were consistent,but the results were the opposite when the DNN model(R^(2)=0.69)included all 22 input variables.These results demonstrated the great potential of DL in tree CW prediction.展开更多
There is an increasing interest in restoring degraded forests,which occupy half of the forest areas.Among the forms of restoration,passive restoration,which involves the elimination of degrading factors and the free e...There is an increasing interest in restoring degraded forests,which occupy half of the forest areas.Among the forms of restoration,passive restoration,which involves the elimination of degrading factors and the free evolution of natural dynamics by applying minimal or no management,is gaining attention.Natural dynamics is difficult to predict due to the influence of multiple interacting factors such as climatic and edaphic conditions,composition and abundance of species,and the successional character of these species.Here,we study the natural dynamics of a mixed forest located in central Spain,which maintained an open forest structure,due to intensive use,until grazing and cutting were banned in the 1960s.The most frequent woody species in this forest are Fagus sylvatica,Quercus petraea,Quercus pyrenaica,Ilex aquifolium,Sorbus aucuparia,Sorbus aria and Prunus avium,with contrasting shade and drought tolerance.These species are common in temperate European deciduous forest and are found here near their southern distribution limit,except for Q.pyrenaica.In order to analyze forest dynamics and composition,three inventories were carried out in 1994,2005 and 2015.Our results show that,despite the Mediterranean influence,the natural dynamics of this forest has been mainly determined by different levels of shade tolerance.After the abandonment of grazing and cutting,Q.pyrenaica expanded rapidly due to its lower shade tolerance,whereas after canopy closure and forest densification,shade-tolerant species gained ground,particularly F.sylvatica,despite its lower drought and late-frost tolerance.If the current dynamics continue,F.sylvatica will overtake the rest of the species,which will be relegated to sites with shallow soils and steep slopes.Simultaneously,all the multi-centennial beech trees,which are undergoing a rapid mortality and decline process,will disappear.展开更多
Permanent sample plots were set up for researching interspecific relationship of the artificia1 larch stand mixed with natural ash in the slash site in Maoershan Experiment Forestry Farm of Northeast Forestry Universi...Permanent sample plots were set up for researching interspecific relationship of the artificia1 larch stand mixed with natural ash in the slash site in Maoershan Experiment Forestry Farm of Northeast Forestry University. All trees in the plots were taken as objective trees and tree number,DBH, distance between trees and that of crown diameter were measured in range of 1-6m from every objective tree. Then study by Alemdag competition index, variance analysis and quantitation method were made. The result showed that the intraspecific competition was more intensive than the interspecific competition. Especially the competition between larch and ash was least relatively. For these kinds of site, the suitable mixture at 20-30 ages should be 2800 Ind/hm2 in density and 2 larch;1 ash in mixed ratio, which might improve site condition to promote stand produetivity.展开更多
Korean pine(Pinus koraiensis) interspecilic competition and intraspecifie companioned with other species competition in old growth Korean pine forest in northeast China were studied using Hegyi's competition index...Korean pine(Pinus koraiensis) interspecilic competition and intraspecifie companioned with other species competition in old growth Korean pine forest in northeast China were studied using Hegyi's competition index model for individual tree.The results show that differences of competitive intensity exist in interspecific and intraspecific for Korean pine with an order of intraspecific >Abies nephrolepis Picea koraiensis Tilia amurensis Betula costat>Acer mono >Ulnuts propinqua>Populus davidiana,and that relationship of competitive index to indivdual size (in DBH) of objective tree follows closely multiplieate eqtuation and that competitive intensity gradually reduces with inereasing of individual size of objective tree, but it is tending towards stability after individual of objective tree inerease to specified size (DBH about 20 cm).It provided a serviceable approach for researches of intraspecific relationship in population ecology.展开更多
Previous research has shown that competition between plants can have differential effects on leaf stoichiometry and non-structural carbohydrate(NSC)in different environments.However,little attention has been given to ...Previous research has shown that competition between plants can have differential effects on leaf stoichiometry and non-structural carbohydrate(NSC)in different environments.However,little attention has been given to understanding these effects on non-photosynthetic organs,particularly of deciduous tree species.Here we assess the impact of competition on below and aboveground biomass,stoichiometry,nutrient composition and NSC in pure and mixed forests of two Larch species,Larix kaempferi and L.olgensis under nitrogen(N)addition.Nitrogen enrichment did not result in stronger intraspecific competition for both species and L.olgensis benefited from the presence of L.kaempferi under different N levels.Stems kept relatively stable C/N compared to roots and branches in response to competition,while N addition imposed stronger impacts on N/P of different organs rather than competition.In contrast to stable C concentrations,starch and soluble sugar concentrations were more easily impacted by competition and the addition of nitrogen.Competition forced L.kaempferi and L.olgensis to allocate more carbon into storage by increasing their starch concentration and starch/soluble sugar of stems under competition.However,no significant differences in stoichiometry and NSC concentration between intra-and interspecific competition were found.NSC and nutrient pools of L.kaempferi stems,branches and coarse roots consistently declined due to competition regardless of N addition.Coarse and fine roots of L.kaempferi accumulated more N when in competition with L.olgensis than with a conspecific neighbor under N addition.Our results show that NSC was more sensitive to competition relative to stoichiometric traits(N and P)of non-photosynthetic organs.展开更多
Background:Seed dispersal by scatter-hoarding animals can affect the developmental dynamics of plant communities.However,how animals might participate in plant inter-community competition has rarely been investigated....Background:Seed dispersal by scatter-hoarding animals can affect the developmental dynamics of plant communities.However,how animals might participate in plant inter-community competition has rarely been investigated.Forest community junction is an area where the competition between plant communities is most prominent and animal activity is more frequent.At present,little is known about how scatter-hoarding animals might assist competitions by adjacent plant communities.Thus,for 3 years(2015–2017),we tracked the fate of 2880 tagged seeds(Quercus aliena var.acuteserrata,Pinus tabuliformis,and P.armandii seed)placed near an edge where the forest composition changes from a pine forest to an oak forest in northwestern China.Results:We found that the seed fates differed when Quercus and Pinus seeds entered adjacent stands.In contrast to Pinus seeds,acorns that entered pine forests were characterized by higher caching rates and longer dispersal distances.Pinus seeds had the highest probability of being predated(85%)by rodents,and eleven Q.aliena var.acuteserrata seedlings were established in pine forests,although none survived in the later stages.In addition,rodents exhibited obvious selectivity in terms of the microhabitats for the seed caching sites.Conclusions:Seed fates differed when Quercus and Pinus seeds entered adjacent stands.The predation pressure by rodents on the seeds of Pinus species limited the germination of seeds and seedling establishment in oak forests.The different seed fates after their bidirectional dispersal could affect the differences in natural regeneration between pine and oak forests,and they might increase the recruitment rates for oak at the edge of an adjacent community.Rodent-mediated seed dispersal could potential unintentionally affect the competition between plant communities.展开更多
Background: Understanding the role of species identity in interactions among individuals is crucial for assessing the productivity and stability of mixed forests over time. However, there is limited knowledge concerni...Background: Understanding the role of species identity in interactions among individuals is crucial for assessing the productivity and stability of mixed forests over time. However, there is limited knowledge concerning the variation in competitive effect and response of different species along climatic gradients. In this study, we investigated the importance of climate, tree size, and competition on the growth of three tree species: spruce(Picea abies), fir(Abies alba), and beech(Fagus sylvatica), and examined their competitive response and effect along a climatic gradient.Methods: We selected 39 plots distributed across the European mountains with records of the position and growth of 5,759 individuals. For each target species, models relating tree growth to tree size, climate and competition were proposed. Competition was modelled using a neighbourhood competition index that considered the effects of inter-and intraspecific competition on target trees. Competitive responses and effects were related to climate.Likelihood methods and information theory were used to select the best model.Results: Our findings revealed that competition had a greater impact on target species growth than tree size or climate. Climate did influence the competitive effects of neighbouring species, but it did not affect the target species? response to competition. The strength of competitive effects varied along the gradient, contingent on the identity of the interacting species. When the target species exhibited an intermediate competitive effect relative to neighbouring species, both higher inter-than intraspecific competitive effects and competition reduction occurred along the gradient. Notably, species competitive effects were most pronounced when the target species' growth was at its peak and weakest when growing conditions were far from their maximum.Conclusions: Climate modulates the effects of competition from neighbouring trees on the target tree and not the susceptibility of the target tree to competition. The modelling approach should be useful in future research to expand our knowledge of how competition modulates forest communities across environmental gradients.展开更多
According to field investigation data,the intraspecific competition and interspecific competition of Pinus koraiensis in broad-leaved Korean pine mixed forest in Changbai Mountains were studied by using Hegyi’s compe...According to field investigation data,the intraspecific competition and interspecific competition of Pinus koraiensis in broad-leaved Korean pine mixed forest in Changbai Mountains were studied by using Hegyi’s competition index model for individual tree.The results showed that intraspecific competition intensity of Pinus koraiensis reduced with increase of diameter scale of trees.The order of competition intensity is:Pinus koraiensis-Fraxinus mandshurica>Pinus koraiensis-Quercus mongolica>Pinus koraiensis-Pinus koraiensis>Pinus koraiensis-Tilia amurensis>Pinus koraiensis-Acer mono>Pinus koraiensis-Tilia mandshurica>Pinus koraiensis-Acer mandshurica.The relationship between competition intensity and individual size of objective tree follows closely the equation CI =AD-B.Based on the relationship,competition intensity in the forest is simulated.At the same time,some conclusions and suggestions are proposed.It is proved that Hegyi′s competition model for individual tree can provide quantitative index for study on intraspecific and interspecific relationship in plant population ecology.展开更多
基金funded by National Natural Science Foundation of China(Grant No.31870623)National Key R&D Program of China(Grant No.2022YFD2200501).
文摘Crown width(CW)is one of the most important tree metrics,but obtaining CW data is laborious and timeconsuming,particularly in natural forests.The Deep Learning(DL)algorithm has been proposed as an alternative to traditional regression,but its performance in predicting CW in natural mixed forests is unclear.The aims of this study were to develop DL models for predicting tree CW of natural spruce-fir-broadleaf mixed forests in northeastern China,to analyse the contribution of tree size,tree species,site quality,stand structure,and competition to tree CW prediction,and to compare DL models with nonlinear mixed effects(NLME)models for their reliability.An amount of total 10,086 individual trees in 192 subplots were employed in this study.The results indicated that all deep neural network(DNN)models were free of overfitting and statistically stable within 10-fold cross-validation,and the best DNN model could explain 69%of the CW variation with no significant heteroskedasticity.In addition to diameter at breast height,stand structure,tree species,and competition showed significant effects on CW.The NLME model(R^(2)=0.63)outperformed the DNN model(R^(2)=0.54)in predicting CW when the six input variables were consistent,but the results were the opposite when the DNN model(R^(2)=0.69)included all 22 input variables.These results demonstrated the great potential of DL in tree CW prediction.
基金support by project SUPERB H2020(Systemic solutions for upscaling of urgent ecosystem restoration for forest related biodiversity and ecosystem services)support by project P2013/MAE-2760(Autonomous Community of Madrid)+3 种基金support by project PID2019-107256RB-I00(Spanish Ministry of Science and Innovation)project FAGUS by the Comunidad de Madrid through the call Research Grants for Young Investigators from Universidad Polit ecnica de Madridsupport by projects 9OHUU0-10-3L226X(Autonomous Community of Madrid)RTI2018-094202-BC21 and RTI2018-094202-A-C22(Spanish Ministry of Science and Innovation)。
文摘There is an increasing interest in restoring degraded forests,which occupy half of the forest areas.Among the forms of restoration,passive restoration,which involves the elimination of degrading factors and the free evolution of natural dynamics by applying minimal or no management,is gaining attention.Natural dynamics is difficult to predict due to the influence of multiple interacting factors such as climatic and edaphic conditions,composition and abundance of species,and the successional character of these species.Here,we study the natural dynamics of a mixed forest located in central Spain,which maintained an open forest structure,due to intensive use,until grazing and cutting were banned in the 1960s.The most frequent woody species in this forest are Fagus sylvatica,Quercus petraea,Quercus pyrenaica,Ilex aquifolium,Sorbus aucuparia,Sorbus aria and Prunus avium,with contrasting shade and drought tolerance.These species are common in temperate European deciduous forest and are found here near their southern distribution limit,except for Q.pyrenaica.In order to analyze forest dynamics and composition,three inventories were carried out in 1994,2005 and 2015.Our results show that,despite the Mediterranean influence,the natural dynamics of this forest has been mainly determined by different levels of shade tolerance.After the abandonment of grazing and cutting,Q.pyrenaica expanded rapidly due to its lower shade tolerance,whereas after canopy closure and forest densification,shade-tolerant species gained ground,particularly F.sylvatica,despite its lower drought and late-frost tolerance.If the current dynamics continue,F.sylvatica will overtake the rest of the species,which will be relegated to sites with shallow soils and steep slopes.Simultaneously,all the multi-centennial beech trees,which are undergoing a rapid mortality and decline process,will disappear.
文摘Permanent sample plots were set up for researching interspecific relationship of the artificia1 larch stand mixed with natural ash in the slash site in Maoershan Experiment Forestry Farm of Northeast Forestry University. All trees in the plots were taken as objective trees and tree number,DBH, distance between trees and that of crown diameter were measured in range of 1-6m from every objective tree. Then study by Alemdag competition index, variance analysis and quantitation method were made. The result showed that the intraspecific competition was more intensive than the interspecific competition. Especially the competition between larch and ash was least relatively. For these kinds of site, the suitable mixture at 20-30 ages should be 2800 Ind/hm2 in density and 2 larch;1 ash in mixed ratio, which might improve site condition to promote stand produetivity.
文摘Korean pine(Pinus koraiensis) interspecilic competition and intraspecifie companioned with other species competition in old growth Korean pine forest in northeast China were studied using Hegyi's competition index model for individual tree.The results show that differences of competitive intensity exist in interspecific and intraspecific for Korean pine with an order of intraspecific >Abies nephrolepis Picea koraiensis Tilia amurensis Betula costat>Acer mono >Ulnuts propinqua>Populus davidiana,and that relationship of competitive index to indivdual size (in DBH) of objective tree follows closely multiplieate eqtuation and that competitive intensity gradually reduces with inereasing of individual size of objective tree, but it is tending towards stability after individual of objective tree inerease to specified size (DBH about 20 cm).It provided a serviceable approach for researches of intraspecific relationship in population ecology.
基金supported by Zhejiang Provincial Natural Science Foundation of China(LQ18C030003,LQ18C160004)Starting Research Fund from Hangzhou Normal University(2018QDL006)。
文摘Previous research has shown that competition between plants can have differential effects on leaf stoichiometry and non-structural carbohydrate(NSC)in different environments.However,little attention has been given to understanding these effects on non-photosynthetic organs,particularly of deciduous tree species.Here we assess the impact of competition on below and aboveground biomass,stoichiometry,nutrient composition and NSC in pure and mixed forests of two Larch species,Larix kaempferi and L.olgensis under nitrogen(N)addition.Nitrogen enrichment did not result in stronger intraspecific competition for both species and L.olgensis benefited from the presence of L.kaempferi under different N levels.Stems kept relatively stable C/N compared to roots and branches in response to competition,while N addition imposed stronger impacts on N/P of different organs rather than competition.In contrast to stable C concentrations,starch and soluble sugar concentrations were more easily impacted by competition and the addition of nitrogen.Competition forced L.kaempferi and L.olgensis to allocate more carbon into storage by increasing their starch concentration and starch/soluble sugar of stems under competition.However,no significant differences in stoichiometry and NSC concentration between intra-and interspecific competition were found.NSC and nutrient pools of L.kaempferi stems,branches and coarse roots consistently declined due to competition regardless of N addition.Coarse and fine roots of L.kaempferi accumulated more N when in competition with L.olgensis than with a conspecific neighbor under N addition.Our results show that NSC was more sensitive to competition relative to stoichiometric traits(N and P)of non-photosynthetic organs.
基金the National Natural Science Foundation of China(No.31470644).
文摘Background:Seed dispersal by scatter-hoarding animals can affect the developmental dynamics of plant communities.However,how animals might participate in plant inter-community competition has rarely been investigated.Forest community junction is an area where the competition between plant communities is most prominent and animal activity is more frequent.At present,little is known about how scatter-hoarding animals might assist competitions by adjacent plant communities.Thus,for 3 years(2015–2017),we tracked the fate of 2880 tagged seeds(Quercus aliena var.acuteserrata,Pinus tabuliformis,and P.armandii seed)placed near an edge where the forest composition changes from a pine forest to an oak forest in northwestern China.Results:We found that the seed fates differed when Quercus and Pinus seeds entered adjacent stands.In contrast to Pinus seeds,acorns that entered pine forests were characterized by higher caching rates and longer dispersal distances.Pinus seeds had the highest probability of being predated(85%)by rodents,and eleven Q.aliena var.acuteserrata seedlings were established in pine forests,although none survived in the later stages.In addition,rodents exhibited obvious selectivity in terms of the microhabitats for the seed caching sites.Conclusions:Seed fates differed when Quercus and Pinus seeds entered adjacent stands.The predation pressure by rodents on the seeds of Pinus species limited the germination of seeds and seedling establishment in oak forests.The different seed fates after their bidirectional dispersal could affect the differences in natural regeneration between pine and oak forests,and they might increase the recruitment rates for oak at the edge of an adjacent community.Rodent-mediated seed dispersal could potential unintentionally affect the competition between plant communities.
基金This publication is based upon work from COST Action CLIMO(CA15226) supported by COST (European Cooperation in Science and Technology)the UMBRACLIM project (PID2019-111781RB-I00)funded by the Spanish Ministry for Science and Innovation. Teresa Valor was contracted with a grant“Juan de la Cierva-Formaci on”(FJC2018-036673-I). Z.S. received funds from the grant no. APVV-20-0365 and from project TreeAdapt supported by the MPRV SR. Aitor Ameztegui is supported by a Serra-Húnter fellowship by the Generalitat de Catalunya。
文摘Background: Understanding the role of species identity in interactions among individuals is crucial for assessing the productivity and stability of mixed forests over time. However, there is limited knowledge concerning the variation in competitive effect and response of different species along climatic gradients. In this study, we investigated the importance of climate, tree size, and competition on the growth of three tree species: spruce(Picea abies), fir(Abies alba), and beech(Fagus sylvatica), and examined their competitive response and effect along a climatic gradient.Methods: We selected 39 plots distributed across the European mountains with records of the position and growth of 5,759 individuals. For each target species, models relating tree growth to tree size, climate and competition were proposed. Competition was modelled using a neighbourhood competition index that considered the effects of inter-and intraspecific competition on target trees. Competitive responses and effects were related to climate.Likelihood methods and information theory were used to select the best model.Results: Our findings revealed that competition had a greater impact on target species growth than tree size or climate. Climate did influence the competitive effects of neighbouring species, but it did not affect the target species? response to competition. The strength of competitive effects varied along the gradient, contingent on the identity of the interacting species. When the target species exhibited an intermediate competitive effect relative to neighbouring species, both higher inter-than intraspecific competitive effects and competition reduction occurred along the gradient. Notably, species competitive effects were most pronounced when the target species' growth was at its peak and weakest when growing conditions were far from their maximum.Conclusions: Climate modulates the effects of competition from neighbouring trees on the target tree and not the susceptibility of the target tree to competition. The modelling approach should be useful in future research to expand our knowledge of how competition modulates forest communities across environmental gradients.
文摘According to field investigation data,the intraspecific competition and interspecific competition of Pinus koraiensis in broad-leaved Korean pine mixed forest in Changbai Mountains were studied by using Hegyi’s competition index model for individual tree.The results showed that intraspecific competition intensity of Pinus koraiensis reduced with increase of diameter scale of trees.The order of competition intensity is:Pinus koraiensis-Fraxinus mandshurica>Pinus koraiensis-Quercus mongolica>Pinus koraiensis-Pinus koraiensis>Pinus koraiensis-Tilia amurensis>Pinus koraiensis-Acer mono>Pinus koraiensis-Tilia mandshurica>Pinus koraiensis-Acer mandshurica.The relationship between competition intensity and individual size of objective tree follows closely the equation CI =AD-B.Based on the relationship,competition intensity in the forest is simulated.At the same time,some conclusions and suggestions are proposed.It is proved that Hegyi′s competition model for individual tree can provide quantitative index for study on intraspecific and interspecific relationship in plant population ecology.