Herein,binary mixed brushes consisting of poly(2-methyl-2-oxazoline)(PMOXA)and poly(2-(dimethylamine)ethyl methacrylate)(PDMAEMA)with different chain lengths were fabricated by successive grafting of NH_(2)-terminated...Herein,binary mixed brushes consisting of poly(2-methyl-2-oxazoline)(PMOXA)and poly(2-(dimethylamine)ethyl methacrylate)(PDMAEMA)with different chain lengths were fabricated by successive grafting of NH_(2)-terminated PMOXA and SH-terminated PDMAEMA onto polydopamine-anchored substrates.The mixed-brush coating was characterized by variable-angle spectroscopic ellipsometry,X-ray photoelectron spectroscopy,Fourier transform infrared spectroscopy,zeta potential measurements,water contact angle,and atomic force microscopy.The mixed brushes showed tunable surface charge,wettability,and surface roughness,depending on the degree of PDMAEMA swelling under varying pH and ionic strength(Ⅰ).Then the adsorption behaviors of pepsin,bovine serum albumin(BSA),γ-globulin,and lysozyme,four very different proteins with regard to isoelectric point,on the mixed brushes coating were studied by using fluorescence microscopy and surface plasmon resonance.When the chain length of PDMAEMA was about twice as long as PMOXA,the mixed brushes not only had high adsorption capacity for pepsin,BSA,and y-globulin but also had a desorption efficiency of 86.9%,87.1%,and 93.5%,respectively.It is explained that electrostatic attraction between the protonated PDMAEMA and positively charged acidic proteins(pepsin and BSA,whose isoelectric points were below the pK_(a) of PDMAEMA)would drive the intensive adsorption(at pH 3,I=10^(-3)mol·L^(-1)for pepsin,and pH 5,I=10^(-5)mol·L^(-1)for BSA),while desorption was dominated by the hydrophilic PMOXA when PDMAEMA was shrinking(at pH 7,I=10^(-1)mol·L^(-1)for pepsin,and pH 9,I=10^(-1)mol·L^(-1)for BSA).Furthermore,the isoelectric precipitation led to the adsorption of neutral protein(γ-globulin,whose isoelectric point was near the pK_a of PDMAEMA)at pH 7,I=10^(-5)mol·L^(-1),while electrostatic repulsion and antifouling PMOXA triggered the desorption of y-globulin at pH 3,I-10^(-1)mol·L^(-1).However,alkaline protein(lysozyme,whose isoelectric point was higher than the pK_(a) of PDMAEMA)exhibited slight adsorption on PMOXA/PDMAEMA mixed brushes under test conditions,regardless of whether PMOXA or PDMAEMA occupied the outermost layer.The antibacterial property of the mixed brushes against Escherichia coli was investigated.PMOXA/PDMAEMA mixed brushes showed significant bactericidal activity at pH 3,I=10^(-3)mol·L^(-1),while the rinse of pH 9,I=10^(-1)mol·L^(-1)solution could remove most of the residual bacteria.This work not only enables controlled adsorption of proteins with different isoelectric points but also ensures that the surface of the coating is minimized from bacterial contamination.展开更多
Parallel connection of multiple inverters is an important means to solve the expansion,reserve and protection of distributed power generation,such as photovoltaics.In view of the shortcomings of traditional droop cont...Parallel connection of multiple inverters is an important means to solve the expansion,reserve and protection of distributed power generation,such as photovoltaics.In view of the shortcomings of traditional droop control methods such as weak anti-interference ability,low tracking accuracy of inverter output voltage and serious circulation phenomenon,a finite control set model predictive control(FCS-MPC)strategy of microgrid multiinverter parallel system based on Mixed Logical Dynamical(MLD)modeling is proposed.Firstly,the MLD modeling method is introduced logical variables,combining discrete events and continuous events to form an overall differential equation,which makes the modeling more accurate.Then a predictive controller is designed based on the model,and constraints are added to the objective function,which can not only solve the real-time changes of the control system by online optimization,but also effectively obtain a higher tracking accuracy of the inverter output voltage and lower total harmonic distortion rate(Total Harmonics Distortion,THD);and suppress the circulating current between the inverters,to obtain a good dynamic response.Finally,the simulation is carried out onMATLAB/Simulink to verify the correctness of the model and the rationality of the proposed strategy.This paper aims to provide guidance for the design and optimal control of multi-inverter parallel systems.展开更多
A feedback control system is needed to restrain plasma vertical displacement in EAST (Experimental Advanced Superconducting Toknmak). A fast control power supply excites active feedback coils, which produces a magne...A feedback control system is needed to restrain plasma vertical displacement in EAST (Experimental Advanced Superconducting Toknmak). A fast control power supply excites active feedback coils, which produces a magnetic field to control the plasma's displacement. With the development of EAST, new demands on the new fast control power supply have led to an enhanced ability of fast response and output current, as well as a new control mode. The structure of cascaded and paralleled H-bridges can meet the demand of extended capacity, and digital control can reMize current and voltage mixed control mode. The validity of the proposed scheme is confirmed by experiments.展开更多
For the appearance of the additive perturbation of controller gain when the controller parameter has minute adjustment at the initial running stage of system,to avoid the adverse effects,this paper investigates the mi...For the appearance of the additive perturbation of controller gain when the controller parameter has minute adjustment at the initial running stage of system,to avoid the adverse effects,this paper investigates the mixed H_2/H_∞ state feedback attitude control problem of microsatellite based on extended LMI method.Firstly,the microsatellite attitude control system is established and transformed into corresponding state space form.Then,without the equivalence restriction of the two Lyapunov variables of H_2 and H∞performance,this paper introduces additional variables to design the mixed H_2/H_∞ control method based on LMI which can also reduce the conservatives.Finally,numerical simulations are analyzed to show that the proposed method can make the satellite stable within 20 s whether there is additive perturbation of the controller gain or not.The comparative analysis of the simulation results between extended LMI method and traditional LMI method also demonstrates the effectiveness and feasibility of the proposed method in this paper.展开更多
This paper proposes a new approach for multi-objective robust control. The approach extends the standard generalized l2 (Gl2) and generalized H2 (GH2) conditions to a set of new linear matrix inequality (LMI) constra...This paper proposes a new approach for multi-objective robust control. The approach extends the standard generalized l2 (Gl2) and generalized H2 (GH2) conditions to a set of new linear matrix inequality (LMI) constraints based on a new stability condition. A technique for variable parameterization is introduced to the multi-objective control problem to preserve the linearity of the synthesis variables. Consequently, the multi-channel multi-objective mixed Gl2/GH2 control problem can be solved less conservatively using computationally tractable algorithms developed in the paper.展开更多
A concurrency control mechanism for collaborative work is akey element in a mixed reality environment. However, conventional lockingmechanisms restrict potential tasks or the support of non-owners, thusincreasing the ...A concurrency control mechanism for collaborative work is akey element in a mixed reality environment. However, conventional lockingmechanisms restrict potential tasks or the support of non-owners, thusincreasing the working time because of waiting to avoid conflicts. Herein, wepropose an adaptive concurrency control approach that can reduce conflictsand work time. We classify shared object manipulation in mixed reality intodetailed goals and tasks. Then, we model the relationships among goal,task, and ownership. As the collaborative work progresses, the proposedsystem adapts the different concurrency control mechanisms of shared objectmanipulation according to the modeling of goal–task–ownership. With theproposed concurrency control scheme, users can hold shared objects andmove and rotate together in a mixed reality environment similar to realindustrial sites. Additionally, this system provides MS Hololens and Myosensors to recognize inputs from a user and provides results in a mixed realityenvironment. The proposed method is applied to install an air conditioneras a case study. Experimental results and user studies show that, comparedwith the conventional approach, the proposed method reduced the number ofconflicts, waiting time, and total working time.展开更多
A new semi-active suspension control strategy through mixed H2/H∞ robust technique was developed due to its flexibility and robustness to model uncertainties.A full car model with seven degrees of freedom was establi...A new semi-active suspension control strategy through mixed H2/H∞ robust technique was developed due to its flexibility and robustness to model uncertainties.A full car model with seven degrees of freedom was established to demonstrate the effectiveness of the new control approach.Magneto-rheological(MR) dampers were designed,manufactured and characterized as available semi-active actuators in the developed semi-active suspension system.The four independent mixed H2/H∞ controllers were devised in order to perform a distributed semi-active control system in the vehicle by which the response velocity and reliability can be improved significantly.The performance of the proposed new approach was investigated in time and frequency domains.A good balance between vehicle's comfort and road holding was achieved.An effective and practical control strategy for semi-active suspension system was thus obtained.This new approach exhibits some advantages in implementation,performance flexibility and robustness compared to existing methods.展开更多
This article studies the effective traffic signal control problem of multiple intersections in a city-level traffic system.A novel regional multi-agent cooperative reinforcement learning algorithm called RegionSTLight...This article studies the effective traffic signal control problem of multiple intersections in a city-level traffic system.A novel regional multi-agent cooperative reinforcement learning algorithm called RegionSTLight is proposed to improve the traffic efficiency.Firstly a regional multi-agent Q-learning framework is proposed,which can equivalently decompose the global Q value of the traffic system into the local values of several regions Based on the framework and the idea of human-machine cooperation,a dynamic zoning method is designed to divide the traffic network into several strong-coupled regions according to realtime traffic flow densities.In order to achieve better cooperation inside each region,a lightweight spatio-temporal fusion feature extraction network is designed.The experiments in synthetic real-world and city-level scenarios show that the proposed RegionS TLight converges more quickly,is more stable,and obtains better asymptotic performance compared to state-of-theart models.展开更多
The transient behaviors of traditional adaptive control may be very poor in general. A practically feasible approach to improve the transient performances is the adoption of adaptive switc- hing control. For a typical...The transient behaviors of traditional adaptive control may be very poor in general. A practically feasible approach to improve the transient performances is the adoption of adaptive switc- hing control. For a typical class of nonlinear systems disturbed by random noises, mixed multiple models consisting of adaptive model and fixed models were considered to design the switching con- trol law. Under certain assumptions, the nonlinear system with the switching control law was proved rigorously to be stable and optimal A simulation example was provided to compare the performance of the switching control and the traditional adaptive control.展开更多
The mixed L1/H-infinity control problem for a class of uncertain linear singular systems is considered using a matrix inequality approach. The purpose is to design a state feedback control law such that the resultant ...The mixed L1/H-infinity control problem for a class of uncertain linear singular systems is considered using a matrix inequality approach. The purpose is to design a state feedback control law such that the resultant closed-loop system is regular, impulse-free, stable and satisfies some given mixed L1/H-infinity performance. A sufficient condition for the existence of such control law is given in terms of a set of matrix inequalities by the introduction of inescapable set and *-norm. When these matrix inequalities are feasible, an explicit expression of the desired state feedback control law is given. A numerical example is used to demonstrate the applicability of the proposed approach.展开更多
Dynamical variables of coupled nonlinear oscillators can exhibit different synchronization patterns depending on the designed coupling scheme. In this paper, a non-fragile linear feedback control strategy with multipl...Dynamical variables of coupled nonlinear oscillators can exhibit different synchronization patterns depending on the designed coupling scheme. In this paper, a non-fragile linear feedback control strategy with multiplicative controller gain uncertainties is proposed for realizing the mixed-synchronization of Chua's circuits connected in a drive-response configuration. In particular, in the mixed-synchronization regime, different state variables of the response system can evolve into complete synchronization, anti-synchronization and even amplitude death simultaneously with the drive variables for an appropriate choice of scaling matrix. Using Lyapunov stability theory, we derive some sufficient criteria for achieving global mixed-synchronization. It is shown that the desired non-fragile state feedback controller can be constructed by solving a set of linear matrix inequalities (LMIs). Numerical simulations are also provided to demonstrate the effectiveness of the proposed control approach.展开更多
EVs (electric vehicles) have been widely accepted as a promising solution for reducing oil consumption, air pollution and greenhouse gas emission. The number of EVs is growing very fast over the years. However, the ...EVs (electric vehicles) have been widely accepted as a promising solution for reducing oil consumption, air pollution and greenhouse gas emission. The number of EVs is growing very fast over the years. However, the high adoption of EVs will impose a burden on the power system, especially for neighborhood level network. In this paper, we propose a mixed control framework for EV charging scheduling to mitigate its impact on the power network. A metric for modeling customer's satisfaction is also proposed to compare the user satisfaction for different algorithms. The impacts of the proposed algorithms on EV charging cost, EV penetration and peak power reduction are evaluated with real data for a neighborhood level network. The simulation results demonstrate the effectiveness of the proposed algorithms.展开更多
Designing a robust controller for a system with timevarying delays poses a major challenge. In this paper, we propose a method based on mixed sensitivity H∞ for the control of linear time invariant(LTI) systems wit...Designing a robust controller for a system with timevarying delays poses a major challenge. In this paper, we propose a method based on mixed sensitivity H∞ for the control of linear time invariant(LTI) systems with varying time delays. The time delay is assumed bounded and the upper bound is known. In the technique we propose, the delay affecting the plant to be controlled is treated as an unmodeled uncertainty(in form of multiplicative uncertainty). That uncertainty is approximated and then an H∞based controller, for the plant represented by the multiplicative uncertainty and the nominal model, is calculated. The obtained H∞controller is used to control the LTI systems with varying time delays. Simulation examples are given to illustrate the effectiveness of the proposed method.展开更多
Since the minimum-boiling azeotropes of C2-C8 alcohols with water and high-water content(up to 95%(mass))in the Fischer-Tropsch aqueous by-products,the separation is energy-intensive and challenging.The energy-saving ...Since the minimum-boiling azeotropes of C2-C8 alcohols with water and high-water content(up to 95%(mass))in the Fischer-Tropsch aqueous by-products,the separation is energy-intensive and challenging.The energy-saving strategy for the complete separation of the Fischer-Tropsch aqueous by-products has received massive attention in recent decades.In this study,a stripper-sidestream decanter process is proposed by exploiting homogeneous azeotropes(C2-C3 alcohols-water)and heterogeneous azeotropes(C4-C8 alcohols-water).The introduction of the stripping column for pre-dehydration avoids the revaporization of the mixture,and energy carried by the overhead vapor is conserved instead of being removed in a condenser.The precise fraction cutting of C1-C3 alcohol-water mixture,C4-C8 alcohols,and water is realized by the sidestream distillation column.The C4-C8 alcohols rich mixture withdrawn from the sidestream flows into the decanter to break the distillation boundary,where the organic phase returns to the sidestream distillation column to obtain the dehydrated C4-C8 alcohols,and the aqueous phase enters the stripping column.Steady-state optimization based on total annual cost(TAC)minimization shows that the stripper-sidestream decanter process reduces TAC by 17.00%and saves energy by 21.27%compared with the conventional three-column distillation process.Further,a control structure of the process is established,and dynamic simulations show that the control structure combining a differential controller with a low-selector exhibits robust co ntrol.This study provides a novel design scheme and deepens the insights into the efficient separation of aqueous by-products of the Fischer-Tropsch synthesis.展开更多
This paper proposes an efficient method for designing accurate structure-specified mixed H2/H∞ optimal controllers for systems with uncertainties and disturbance using particle swarm (PSO) algorithm. It is designed t...This paper proposes an efficient method for designing accurate structure-specified mixed H2/H∞ optimal controllers for systems with uncertainties and disturbance using particle swarm (PSO) algorithm. It is designed to find a suitable controller that minimizes the performance index of error signal subject to an unequal constraint on the norm of the closed-loop system. Although the mixed H2/H∞ for the output feedback approach control is considered as a robust and optimal control technique, the design process normally comes up with a complex and non-convex optimization problem, which is difficult to solve by the conventional optimization methods. The PSO can efficiently solve design problems of multi-input-multi-output (MIMO) optimal control systems, which is very suitable for practical engineering designs. It is used to search for parameters of a structure-specified controller, which satisfies mixed performance index. The simulation and experimental results show high feasibility, robustness and practical value compared with the conventional proportional-integral-derivative (PID) and proportional-Integral (PI) controller, and the proposed algorithm is also more efficient compared with the genetic algorithm (GA).展开更多
Highly efficient and stable hybrid white organic light-emitting diodes (HWOLEDs) with a mixed bipolar interlayer between fluorescent blue and phosphorescent yellow emitting layers are demonstrated. The bipolar inter...Highly efficient and stable hybrid white organic light-emitting diodes (HWOLEDs) with a mixed bipolar interlayer between fluorescent blue and phosphorescent yellow emitting layers are demonstrated. The bipolar interlayer is a mixture of p-type diphenyl (l0-phenyl-lOH-spiro [acridine-9,9'-fluoren]-3Lyl) phosphine oxide and n-type 2',2- (1,3,5-benzinetriyl)-tris(1-phenyl-l-H-benzimidazole). The electroluminance and Commission Internationale de l'Eclairage (CIE1931) coordinates' characteristics can be modulated easily by adjusting the ratio of the hole- predominated material to the electron-predominated material in the interlayer. The hybrid WOLED with a p-type:n-type ratio of 1:3 shows a maximum current efficiency and power efficiency of 61.1 ed/A and 55.8 lm/W, respectively, with warm white CIE coordinates of (0.34, 0.43). The excellent efficiency and adaptive CIE coordi- nates are attributed to the mixed interlayer with improved charge carrier balance, optimized exciton distribution, and enhanced harvesting of singlet and triplet excitons.展开更多
By combining the α/γ interface migration and the carbon diffusion at the interface in Fe-C alloys, a mathematical model is constructed to describe the mixed-control mechanism for proeutectoid ferrite formation from ...By combining the α/γ interface migration and the carbon diffusion at the interface in Fe-C alloys, a mathematical model is constructed to describe the mixed-control mechanism for proeutectoid ferrite formation from austenite. In this model, the α/γ interface is treated as non-equilibrium interface, i.e., the carbon concentration of austenite at γ/α interface is obtained through theoretical calculation, instead of that assumed as the local equilibrium concentration. For isothermal precipitation of ferrite in Fe-C alloys, the calculated results show that the rate of interface migration decreases monotonically during the whole process, while the rate of carbon diffusion from γ/α interface into austenite increases to a peak value and then decreases. The process of ferrite growth may be considered as composed of three stages: the period of rapid growth, slow growth and finishing stage. The results also show that the carbon concentration of austenite at γ/α interface could not reach the thermodynamic equilibrium value even at the last stage of ferrite growth.展开更多
基金the financial support of the National Natural Science Foundation of China(21674102)。
文摘Herein,binary mixed brushes consisting of poly(2-methyl-2-oxazoline)(PMOXA)and poly(2-(dimethylamine)ethyl methacrylate)(PDMAEMA)with different chain lengths were fabricated by successive grafting of NH_(2)-terminated PMOXA and SH-terminated PDMAEMA onto polydopamine-anchored substrates.The mixed-brush coating was characterized by variable-angle spectroscopic ellipsometry,X-ray photoelectron spectroscopy,Fourier transform infrared spectroscopy,zeta potential measurements,water contact angle,and atomic force microscopy.The mixed brushes showed tunable surface charge,wettability,and surface roughness,depending on the degree of PDMAEMA swelling under varying pH and ionic strength(Ⅰ).Then the adsorption behaviors of pepsin,bovine serum albumin(BSA),γ-globulin,and lysozyme,four very different proteins with regard to isoelectric point,on the mixed brushes coating were studied by using fluorescence microscopy and surface plasmon resonance.When the chain length of PDMAEMA was about twice as long as PMOXA,the mixed brushes not only had high adsorption capacity for pepsin,BSA,and y-globulin but also had a desorption efficiency of 86.9%,87.1%,and 93.5%,respectively.It is explained that electrostatic attraction between the protonated PDMAEMA and positively charged acidic proteins(pepsin and BSA,whose isoelectric points were below the pK_(a) of PDMAEMA)would drive the intensive adsorption(at pH 3,I=10^(-3)mol·L^(-1)for pepsin,and pH 5,I=10^(-5)mol·L^(-1)for BSA),while desorption was dominated by the hydrophilic PMOXA when PDMAEMA was shrinking(at pH 7,I=10^(-1)mol·L^(-1)for pepsin,and pH 9,I=10^(-1)mol·L^(-1)for BSA).Furthermore,the isoelectric precipitation led to the adsorption of neutral protein(γ-globulin,whose isoelectric point was near the pK_a of PDMAEMA)at pH 7,I=10^(-5)mol·L^(-1),while electrostatic repulsion and antifouling PMOXA triggered the desorption of y-globulin at pH 3,I-10^(-1)mol·L^(-1).However,alkaline protein(lysozyme,whose isoelectric point was higher than the pK_(a) of PDMAEMA)exhibited slight adsorption on PMOXA/PDMAEMA mixed brushes under test conditions,regardless of whether PMOXA or PDMAEMA occupied the outermost layer.The antibacterial property of the mixed brushes against Escherichia coli was investigated.PMOXA/PDMAEMA mixed brushes showed significant bactericidal activity at pH 3,I=10^(-3)mol·L^(-1),while the rinse of pH 9,I=10^(-1)mol·L^(-1)solution could remove most of the residual bacteria.This work not only enables controlled adsorption of proteins with different isoelectric points but also ensures that the surface of the coating is minimized from bacterial contamination.
基金supported by the Major Science and Technology Projects of Gansu Province(Grant No.20ZD7GF011)Gansu Province Higher Education Industry Support Plan Project:Research on the Collaborative Operation of Solar Thermal Storage+Wind-Solar Hybrid Power Generation--Based on“Integrated Energy Demonstration of Wind-Solar Energy Storage in Gansu Province”(Project No.2022CYZC-34).
文摘Parallel connection of multiple inverters is an important means to solve the expansion,reserve and protection of distributed power generation,such as photovoltaics.In view of the shortcomings of traditional droop control methods such as weak anti-interference ability,low tracking accuracy of inverter output voltage and serious circulation phenomenon,a finite control set model predictive control(FCS-MPC)strategy of microgrid multiinverter parallel system based on Mixed Logical Dynamical(MLD)modeling is proposed.Firstly,the MLD modeling method is introduced logical variables,combining discrete events and continuous events to form an overall differential equation,which makes the modeling more accurate.Then a predictive controller is designed based on the model,and constraints are added to the objective function,which can not only solve the real-time changes of the control system by online optimization,but also effectively obtain a higher tracking accuracy of the inverter output voltage and lower total harmonic distortion rate(Total Harmonics Distortion,THD);and suppress the circulating current between the inverters,to obtain a good dynamic response.Finally,the simulation is carried out onMATLAB/Simulink to verify the correctness of the model and the rationality of the proposed strategy.This paper aims to provide guidance for the design and optimal control of multi-inverter parallel systems.
基金supported by ITER Program of China(973 Program)(No.2011GB109002)National Natural Science Foundation of China(No.11275056)Hefei University of Technology Doctor Research Foundation of China(No.2011HGBZ1292)
文摘A feedback control system is needed to restrain plasma vertical displacement in EAST (Experimental Advanced Superconducting Toknmak). A fast control power supply excites active feedback coils, which produces a magnetic field to control the plasma's displacement. With the development of EAST, new demands on the new fast control power supply have led to an enhanced ability of fast response and output current, as well as a new control mode. The structure of cascaded and paralleled H-bridges can meet the demand of extended capacity, and digital control can reMize current and voltage mixed control mode. The validity of the proposed scheme is confirmed by experiments.
文摘For the appearance of the additive perturbation of controller gain when the controller parameter has minute adjustment at the initial running stage of system,to avoid the adverse effects,this paper investigates the mixed H_2/H_∞ state feedback attitude control problem of microsatellite based on extended LMI method.Firstly,the microsatellite attitude control system is established and transformed into corresponding state space form.Then,without the equivalence restriction of the two Lyapunov variables of H_2 and H∞performance,this paper introduces additional variables to design the mixed H_2/H_∞ control method based on LMI which can also reduce the conservatives.Finally,numerical simulations are analyzed to show that the proposed method can make the satellite stable within 20 s whether there is additive perturbation of the controller gain or not.The comparative analysis of the simulation results between extended LMI method and traditional LMI method also demonstrates the effectiveness and feasibility of the proposed method in this paper.
基金Project supported by the National Natural Science Foundation ofChina (No. 60374028) and the Scientific Research Foundation forReturned Overseas Chinese Scholars Ministry of Education (No.[2004]176)
文摘This paper proposes a new approach for multi-objective robust control. The approach extends the standard generalized l2 (Gl2) and generalized H2 (GH2) conditions to a set of new linear matrix inequality (LMI) constraints based on a new stability condition. A technique for variable parameterization is introduced to the multi-objective control problem to preserve the linearity of the synthesis variables. Consequently, the multi-channel multi-objective mixed Gl2/GH2 control problem can be solved less conservatively using computationally tractable algorithms developed in the paper.
基金supported by“Regional Innovation Strategy (RIS)”through the National Research Foundation of Korea (NRF)funded by the Ministry of Education (MOE) (2021RIS-004).
文摘A concurrency control mechanism for collaborative work is akey element in a mixed reality environment. However, conventional lockingmechanisms restrict potential tasks or the support of non-owners, thusincreasing the working time because of waiting to avoid conflicts. Herein, wepropose an adaptive concurrency control approach that can reduce conflictsand work time. We classify shared object manipulation in mixed reality intodetailed goals and tasks. Then, we model the relationships among goal,task, and ownership. As the collaborative work progresses, the proposedsystem adapts the different concurrency control mechanisms of shared objectmanipulation according to the modeling of goal–task–ownership. With theproposed concurrency control scheme, users can hold shared objects andmove and rotate together in a mixed reality environment similar to realindustrial sites. Additionally, this system provides MS Hololens and Myosensors to recognize inputs from a user and provides results in a mixed realityenvironment. The proposed method is applied to install an air conditioneras a case study. Experimental results and user studies show that, comparedwith the conventional approach, the proposed method reduced the number ofconflicts, waiting time, and total working time.
基金Project(50775225) supported by the National Natural Science Foundation of ChinaProjects(CSTC, 2008AC6097, 2008BA6025) supported by National Natural Science Foundation of Chongqing, China
文摘A new semi-active suspension control strategy through mixed H2/H∞ robust technique was developed due to its flexibility and robustness to model uncertainties.A full car model with seven degrees of freedom was established to demonstrate the effectiveness of the new control approach.Magneto-rheological(MR) dampers were designed,manufactured and characterized as available semi-active actuators in the developed semi-active suspension system.The four independent mixed H2/H∞ controllers were devised in order to perform a distributed semi-active control system in the vehicle by which the response velocity and reliability can be improved significantly.The performance of the proposed new approach was investigated in time and frequency domains.A good balance between vehicle's comfort and road holding was achieved.An effective and practical control strategy for semi-active suspension system was thus obtained.This new approach exhibits some advantages in implementation,performance flexibility and robustness compared to existing methods.
基金Supported by Program for New Century Excellent Talents in University(NCET-04-0283)the Funds for Creative Research Groups of China(60521003)+4 种基金Program for Changjiang Scholars and Innovative Research Team in University(IRT0421)the State Key Program of National Natural Science Foundation of China(60534010)and National Natural Science Foundation of China(60674021)the Funds of Ph.D.Program of Ministry of Education,China(20060145019)the 111 Project(B08015)
基金supported by the National Science and Technology Major Project (2021ZD0112702)the National Natural Science Foundation (NNSF)of China (62373100,62233003)the Natural Science Foundation of Jiangsu Province of China (BK20202006)。
文摘This article studies the effective traffic signal control problem of multiple intersections in a city-level traffic system.A novel regional multi-agent cooperative reinforcement learning algorithm called RegionSTLight is proposed to improve the traffic efficiency.Firstly a regional multi-agent Q-learning framework is proposed,which can equivalently decompose the global Q value of the traffic system into the local values of several regions Based on the framework and the idea of human-machine cooperation,a dynamic zoning method is designed to divide the traffic network into several strong-coupled regions according to realtime traffic flow densities.In order to achieve better cooperation inside each region,a lightweight spatio-temporal fusion feature extraction network is designed.The experiments in synthetic real-world and city-level scenarios show that the proposed RegionS TLight converges more quickly,is more stable,and obtains better asymptotic performance compared to state-of-theart models.
基金Supported by the National Natural Science Foundation of China (60704002)
文摘The transient behaviors of traditional adaptive control may be very poor in general. A practically feasible approach to improve the transient performances is the adoption of adaptive switc- hing control. For a typical class of nonlinear systems disturbed by random noises, mixed multiple models consisting of adaptive model and fixed models were considered to design the switching con- trol law. Under certain assumptions, the nonlinear system with the switching control law was proved rigorously to be stable and optimal A simulation example was provided to compare the performance of the switching control and the traditional adaptive control.
基金supported by the National Natural Science Foundation of China (No.60774044)the Professional Research Foundation for Advanced Talents of Jiangsu University (No.07JDG037)+2 种基金the Natural Science Fund for Colleges and Universities in Jiangsu Province (No.08KJ510010)the Open Project of National Key Laboratory of Industrial Control Technology of Zhejiang University (No.ICT0910)Qing Lan Project of Jiangsu Province
文摘The mixed L1/H-infinity control problem for a class of uncertain linear singular systems is considered using a matrix inequality approach. The purpose is to design a state feedback control law such that the resultant closed-loop system is regular, impulse-free, stable and satisfies some given mixed L1/H-infinity performance. A sufficient condition for the existence of such control law is given in terms of a set of matrix inequalities by the introduction of inescapable set and *-norm. When these matrix inequalities are feasible, an explicit expression of the desired state feedback control law is given. A numerical example is used to demonstrate the applicability of the proposed approach.
基金Project supported by the Foundation for Distinguished Young Talents in Higher Education of Guangdong Province of China(Grant No. LYM10074)the Natural Science Foundation of Guangdong Province,China (Grant No. 9451042001004076)
文摘Dynamical variables of coupled nonlinear oscillators can exhibit different synchronization patterns depending on the designed coupling scheme. In this paper, a non-fragile linear feedback control strategy with multiplicative controller gain uncertainties is proposed for realizing the mixed-synchronization of Chua's circuits connected in a drive-response configuration. In particular, in the mixed-synchronization regime, different state variables of the response system can evolve into complete synchronization, anti-synchronization and even amplitude death simultaneously with the drive variables for an appropriate choice of scaling matrix. Using Lyapunov stability theory, we derive some sufficient criteria for achieving global mixed-synchronization. It is shown that the desired non-fragile state feedback controller can be constructed by solving a set of linear matrix inequalities (LMIs). Numerical simulations are also provided to demonstrate the effectiveness of the proposed control approach.
文摘EVs (electric vehicles) have been widely accepted as a promising solution for reducing oil consumption, air pollution and greenhouse gas emission. The number of EVs is growing very fast over the years. However, the high adoption of EVs will impose a burden on the power system, especially for neighborhood level network. In this paper, we propose a mixed control framework for EV charging scheduling to mitigate its impact on the power network. A metric for modeling customer's satisfaction is also proposed to compare the user satisfaction for different algorithms. The impacts of the proposed algorithms on EV charging cost, EV penetration and peak power reduction are evaluated with real data for a neighborhood level network. The simulation results demonstrate the effectiveness of the proposed algorithms.
文摘Designing a robust controller for a system with timevarying delays poses a major challenge. In this paper, we propose a method based on mixed sensitivity H∞ for the control of linear time invariant(LTI) systems with varying time delays. The time delay is assumed bounded and the upper bound is known. In the technique we propose, the delay affecting the plant to be controlled is treated as an unmodeled uncertainty(in form of multiplicative uncertainty). That uncertainty is approximated and then an H∞based controller, for the plant represented by the multiplicative uncertainty and the nominal model, is calculated. The obtained H∞controller is used to control the LTI systems with varying time delays. Simulation examples are given to illustrate the effectiveness of the proposed method.
文摘Since the minimum-boiling azeotropes of C2-C8 alcohols with water and high-water content(up to 95%(mass))in the Fischer-Tropsch aqueous by-products,the separation is energy-intensive and challenging.The energy-saving strategy for the complete separation of the Fischer-Tropsch aqueous by-products has received massive attention in recent decades.In this study,a stripper-sidestream decanter process is proposed by exploiting homogeneous azeotropes(C2-C3 alcohols-water)and heterogeneous azeotropes(C4-C8 alcohols-water).The introduction of the stripping column for pre-dehydration avoids the revaporization of the mixture,and energy carried by the overhead vapor is conserved instead of being removed in a condenser.The precise fraction cutting of C1-C3 alcohol-water mixture,C4-C8 alcohols,and water is realized by the sidestream distillation column.The C4-C8 alcohols rich mixture withdrawn from the sidestream flows into the decanter to break the distillation boundary,where the organic phase returns to the sidestream distillation column to obtain the dehydrated C4-C8 alcohols,and the aqueous phase enters the stripping column.Steady-state optimization based on total annual cost(TAC)minimization shows that the stripper-sidestream decanter process reduces TAC by 17.00%and saves energy by 21.27%compared with the conventional three-column distillation process.Further,a control structure of the process is established,and dynamic simulations show that the control structure combining a differential controller with a low-selector exhibits robust co ntrol.This study provides a novel design scheme and deepens the insights into the efficient separation of aqueous by-products of the Fischer-Tropsch synthesis.
文摘This paper proposes an efficient method for designing accurate structure-specified mixed H2/H∞ optimal controllers for systems with uncertainties and disturbance using particle swarm (PSO) algorithm. It is designed to find a suitable controller that minimizes the performance index of error signal subject to an unequal constraint on the norm of the closed-loop system. Although the mixed H2/H∞ for the output feedback approach control is considered as a robust and optimal control technique, the design process normally comes up with a complex and non-convex optimization problem, which is difficult to solve by the conventional optimization methods. The PSO can efficiently solve design problems of multi-input-multi-output (MIMO) optimal control systems, which is very suitable for practical engineering designs. It is used to search for parameters of a structure-specified controller, which satisfies mixed performance index. The simulation and experimental results show high feasibility, robustness and practical value compared with the conventional proportional-integral-derivative (PID) and proportional-Integral (PI) controller, and the proposed algorithm is also more efficient compared with the genetic algorithm (GA).
基金Supported by the National Natural Science Foundation of China under Grant No 91441201
文摘Highly efficient and stable hybrid white organic light-emitting diodes (HWOLEDs) with a mixed bipolar interlayer between fluorescent blue and phosphorescent yellow emitting layers are demonstrated. The bipolar interlayer is a mixture of p-type diphenyl (l0-phenyl-lOH-spiro [acridine-9,9'-fluoren]-3Lyl) phosphine oxide and n-type 2',2- (1,3,5-benzinetriyl)-tris(1-phenyl-l-H-benzimidazole). The electroluminance and Commission Internationale de l'Eclairage (CIE1931) coordinates' characteristics can be modulated easily by adjusting the ratio of the hole- predominated material to the electron-predominated material in the interlayer. The hybrid WOLED with a p-type:n-type ratio of 1:3 shows a maximum current efficiency and power efficiency of 61.1 ed/A and 55.8 lm/W, respectively, with warm white CIE coordinates of (0.34, 0.43). The excellent efficiency and adaptive CIE coordi- nates are attributed to the mixed interlayer with improved charge carrier balance, optimized exciton distribution, and enhanced harvesting of singlet and triplet excitons.
基金This work was supported by the National Natural Science Foundation of China under grant No.50075053the Emphasized Item of Development Funds of Science and Technology of Shanghai City,China(No.03H201).
文摘By combining the α/γ interface migration and the carbon diffusion at the interface in Fe-C alloys, a mathematical model is constructed to describe the mixed-control mechanism for proeutectoid ferrite formation from austenite. In this model, the α/γ interface is treated as non-equilibrium interface, i.e., the carbon concentration of austenite at γ/α interface is obtained through theoretical calculation, instead of that assumed as the local equilibrium concentration. For isothermal precipitation of ferrite in Fe-C alloys, the calculated results show that the rate of interface migration decreases monotonically during the whole process, while the rate of carbon diffusion from γ/α interface into austenite increases to a peak value and then decreases. The process of ferrite growth may be considered as composed of three stages: the period of rapid growth, slow growth and finishing stage. The results also show that the carbon concentration of austenite at γ/α interface could not reach the thermodynamic equilibrium value even at the last stage of ferrite growth.