Glycerol carbonate,an important glycerol value-added product,has been widely used as an active intermediate and inert solvent in the synthesis of cosmetics,detergents,chemical intermediates,polymers,and so on.The dire...Glycerol carbonate,an important glycerol value-added product,has been widely used as an active intermediate and inert solvent in the synthesis of cosmetics,detergents,chemical intermediates,polymers,and so on.The direct carbonylation from glycerol with CO_(2)is considered a promising route,but still tough work due to the thermodynamic stability and the kinetic inertness of CO_(2).In this work,highlyselective direct carbonylation of glycerol and CO_(2)into glycerol carbonate has been achieved over highly dispersed MgInCe-mixed metal oxides(MgInCe-MMO),which were prepared through the topological transformation derived from the MgInCe-layered double hydroxides(MgInCe-LDHs).By precisely modulating the surface basic-acidic properties and the oxygen vacancies,an efficient carbonylation of glycerol with CO_(2)has been achieved with a selectivity of up to>99%to glycerol carbonate.Deep investigation into the synergistic catalysis of base-acid sites and oxygen vacancies has been clarified.展开更多
Direct air capture(DAC)of CO_(2)plays an indispensable role in achieving carbon-neutral goals as one of the key negative emission technologies.Since large air flows are required to capture the ultradilute CO_(2)from t...Direct air capture(DAC)of CO_(2)plays an indispensable role in achieving carbon-neutral goals as one of the key negative emission technologies.Since large air flows are required to capture the ultradilute CO_(2)from the air,lab-synthesized adsorbents in powder form may cause unacceptable gas pressure drops and poor heat and mass transfer efficiencies.A structured adsorbent is essential for the implementation of gas-solid contactors for cost-and energy-efficient DAC systems.In this study,efficient adsorbent poly(ethyleneimine)(PEI)-functionalized Mg-Al-CO_(3)layered double hydroxide(LDH)-derived mixed metal oxides(MMOs)are three-dimensional(3D)printed into monoliths for the first time with more than 90%adsorbent loadings.The printing process has been optimized by initially printing the LDH powder into monoliths followed by calcination into MMO monoliths.This structure exhibits a 32.7%higher specific surface area and a 46.1%higher pore volume,as compared to the direct printing of the MMO powder into a monolith.After impregnation of PEI,the monolith demonstrates a large adsorption capacity(1.82 mmol/g)and fast kinetics(0.7 mmol/g/h)using a CO_(2)feed gas at 400 ppm at 25℃,one of the highest values among the shaped DAC adsorbents.Smearing of the amino-polymers during the post-printing process affects the diffusion of CO_(2),resulting in slower adsorption kinetics of pre-impregnation monoliths compared to post-impregnation monoliths.The optimal PEI/MeOH ratio for the post-impregnation solution prevents pores clogging that would affect both adsorption capacity and kinetics.展开更多
Catalytic oxidation is regarded as one of the most promising strategies for volatile organic compounds(VOCs)purification.Mixed metal oxides(MMOs),after topological transformation using layered double hydroxides(LDHs)a...Catalytic oxidation is regarded as one of the most promising strategies for volatile organic compounds(VOCs)purification.Mixed metal oxides(MMOs),after topological transformation using layered double hydroxides(LDHs)as precursors,are extensively used as catalysts for VOCs oxidation due to their uniformity advantage.This review summarizes the developments in the LDH-derived VOCs heterogeneous catalytic oxidation over the last 10 years.Particularly,it addresses the VOCs abatement performance over MMO,noble metal/MMO,core-shell structured MMO,and integral MMO film catalysts originating from LDHs.Moreover,it highlights the water vapor effect and oxidation mechanism.This review indicates that LDH-based catalysts are a category of important VOCs oxidation materials.展开更多
Marine biofouling is an expensive problem that needs evolved chemical or physical antifouling strategies.However,most of the current antifouling materials that would damage the environment through metal leaching and b...Marine biofouling is an expensive problem that needs evolved chemical or physical antifouling strategies.However,most of the current antifouling materials that would damage the environment through metal leaching and bacteria resistance are being halted.Nanozyme is one kind of environmental antifouling materials through generating reactive oxygen species(ROS).We prepared various contents of CeO2 that could uniform disperse compounding with Co3 O4 and CoAl2 O4 to form a stable Co-Al-Ce mixed metal oxide(MMO) by a layered double hydroxide derived method.We find that coupling with CeO2 can improve the peroxidase(POx) activity.When the molar ratio of Ce is 2.5% and the calcination temperature is 200℃,the POx activity of Co-Al-Ce MMO is the best caused by the good dispersion of catalytically active components and the high specific area(150.10±4.95 m2/g).This novel Co-Al-Ce MMO also exhibits an antibacterial mode of action Gram-negative bacteria in near-neutral pH solution through generating ROS(mainly ·O2-)in the presence of H2 O2.Ce containing MMO can be utilized as potential green marine antifouling material.展开更多
Mixed metal oxide(MMO) represents a critical class of materials that can allow for obtaining a dynamic interface between its components:reduced metal and its metal oxide counterpart during an electrocatalytic reaction...Mixed metal oxide(MMO) represents a critical class of materials that can allow for obtaining a dynamic interface between its components:reduced metal and its metal oxide counterpart during an electrocatalytic reaction.Here,a synthetic method utilizing a MOF-derived micro/mesoporous carbon as a template to prepare sub-2 nm MMO catalysts for CO_(2) electro reduction is reported.Starting from the zeolite imidazolate framework(ZIF-8),the pyrolyzed derivatives were used to synthesize sub-2 nm Pd-Ni MMO with different compositions.The Ni-rich(Pd_(20)-Ni_(80)/ZC) catalyst exhibits unexpectedly superior performance for CO production with an improved Faradaic efficiency(FE) of 95.3% at the current density of 200 mA cm^(-2) at-0.56 V vs.reversible hydrogen electrode(RHE) compared to other Pd-Ni compositions.X-ray photoelectron spectroscopy(XPS) analysis confirms the presence of Ni^(2+) and Pd^(2+) in all compositions,demonstrating the presence of MMO.Density functional theory(DFT) calculation reveals that the lower CO binding energy on the surface of the Pd_(20)-Ni_(80) cluster eases CO desorption,thus increasing its production.This work provides a general synthetic strategy for MMO electrocatalysts and can pave a new way for screening multimetallic catalysts with a dynamic electrochemical interface.展开更多
MgAl and MgMAl oxides(M = Co,Ni and Cu) with a Mg:M:Al molar ratio = 4:1:1 were synthesized from the calcination of their corresponding layered double hydroxide(LDHs) precursors.Their catalytic activities were...MgAl and MgMAl oxides(M = Co,Ni and Cu) with a Mg:M:Al molar ratio = 4:1:1 were synthesized from the calcination of their corresponding layered double hydroxide(LDHs) precursors.Their catalytic activities were examined for the oxidation of ethylbenzene using tert-butylhydroperoxide(TBHP) as an oxidant.The oxidized product was mainly acetophenone.The catalytic activities were in the order of MgCuAlMgNiAl~NiAl~MgCoAl~CoAlCuAlMgAl oxides.Reusability studies show that the catalysts are stable under the reaction conditions.展开更多
To enhance the hydrogen release during hydrogen storage,several Pt-Ir supported on Mg-Al mixed oxide catalysts were prepared and then applied into the dehydrogenation of methylcyclohexane(MCH)in this study.The effects...To enhance the hydrogen release during hydrogen storage,several Pt-Ir supported on Mg-Al mixed oxide catalysts were prepared and then applied into the dehydrogenation of methylcyclohexane(MCH)in this study.The effects of iridium content,reduction temperature on the activity and stability of the catalysts were studied in detail.In the presence of Ir,metal particle size was decrea sed and electron transfer between Ir and Pt was observed.High reduction temperature increased the metallic Ir content but enlarged the particle size of active site s.During the dehydrogenation reaction on Pt-Ir bimetallic catalyst,MCH was efficiently converted into toluene and PtIr-5/Mg-Al-275 exhibited the highe st activity.After prolonging the residence time and raising the reaction temperature to 350℃the conversion and hydrogen evolution rate were increased to 99.9%and 578.7 mmol·(g Pt)^-1·min^-1,respectively.Moreover,no carbon deposition was observed in the spent catalyst,presenting a high anti-coking ability and good potential for industrial application.展开更多
Ammonium dinitramide(ADN)based liquid monopropellants have been identified as environmentally benign substitutes for hydrazine monopropellant.However,new catalysts are to be developed for making ADN monopropellants co...Ammonium dinitramide(ADN)based liquid monopropellants have been identified as environmentally benign substitutes for hydrazine monopropellant.However,new catalysts are to be developed for making ADN monopropellants cold-start capable.In the present study,performance of Co and Ba doped CuCr_2O_4 nanocatalysts prepared by hydrothermal method was evaluated on the decomposition of aqueous ADN solution and ADN liquid monopropellant(LMP103X).The catalysts were characterized by PXRD(Powder X-ray Diffraction),FTIR(Fourier Transform Infrared spectroscopy),SEM(Scanning Electron Microscopy),TEM(Transmission Electron Microscopy),EDS(Energy Dispersive X-ray Spectroscopy),and XPS(X-ray Photoelectron Spectroscopy).The nanosize was confirmed by SEM and TEM,while the nanoflake morphology was confirmed by the SEM analysis.Further,we obtained the elemental composition from the EDS analysis.We investigated the catalytic activity of the catalysts by thermogravimetric(TG)analysis and the developed catalysts lowered the decomposition temperature of ADN monopropellant by about 55℃.The XPS analysis confirmed the presence of metal ions with different chemical states.Apparently,increase in the surface area of the catalysts and the mixed active sites as well as the development of oxygen vacancy on the catalyst surface introduced by metal doping are influencing the decomposition temperature of ADN samples.展开更多
Due to the advantages of low energy consumption and high CO_(2) selectivity, the development of solid amine-based materials has been regarded as a hot research topic in the field of DAC for the past decades.The adsorp...Due to the advantages of low energy consumption and high CO_(2) selectivity, the development of solid amine-based materials has been regarded as a hot research topic in the field of DAC for the past decades.The adsorption capacity and stability over multiple cycles have been the top priorities for evaluation of practical application value. Herein, we synthesized a novel DAC material by loading TEPA onto defect-rich Mg_(0.55)Al-O MMOs with enhanced charge transfer effect. The optimal Mg_(0.55)Al-O-TEPA67% demonstrates the highest CO_(2)uptake of(3.0 mmol g^(-1)) and excellent regenerability, maintaining ~90% of the initial adsorption amount after 80 adsorption/desorption cycles. The in situ DRIFTS experiments suggested the formation of bicarbonate species under wet conditions. DFT calculations indicated that the stronger bonding between Mg_(0.55)Al-O support and solid amine was caused by the abundance of oxygen defects on MMOs confirmed by XPS and ESR, which favors the charge transfer between the support and amine,resulting in intense interaction and excellent regenerability. This work for the first time conducted comprehensive and systematic investigation on the stabilization mechanism for MMOs supported solid amine adsorbents with highest uptake and superior cyclic stability in depth, which is different from the most popular SiO_(2)-support, thus providing facile strategy and comprehensive theoretical mechanism support for future research about DAC materials.展开更多
Several Mo-V-Te-O mixed metal oxides catalysts with different dopant were prepared and used for catalytic oxidation propane to acrolein. It was revealed that the addition of P could greatly improve the performance of ...Several Mo-V-Te-O mixed metal oxides catalysts with different dopant were prepared and used for catalytic oxidation propane to acrolein. It was revealed that the addition of P could greatly improve the performance of the Mo-V-Te-O catalyst. The catalysts were examined by XRD and H2-TPR. The XRD characteristic of the Mo-V-Te-P-O showed that the addition of P could aggrandize the (V0.07Mo0.93)5O14 phase. H2-TPR illuminated that the MoV0.3Te0.23P0.15On catalyst took on the best redox ability.展开更多
Photo-assisted SCR(PSCR) offers a potential solution for removal of NO at room temperature. MnTiO_(x)as PSCR catalyst exhibits superior performance with NO removal of 100% at the room temperature. Electron paramagneti...Photo-assisted SCR(PSCR) offers a potential solution for removal of NO at room temperature. MnTiO_(x)as PSCR catalyst exhibits superior performance with NO removal of 100% at the room temperature. Electron paramagnetic resonance(EPR) analysis revealed the presence of numerous oxygen vacancies on MnTiO_(x). Optical carrier density functional theory(DFT) calculations showed that the threedimensional orbital hybridization of Mn and Ti is significantly enhanced under light irradiation. The MnTiO_(x)catalyst exhibited excellent electron–hole separation ability, which can adsorbe NH_(3)and dissociate to form NH_(2)fragments and H atoms. In-situ diffuse reflectance infrared fourier-transform spectroscopy(DRIFTS) indicated that the optical carrier enhanced NH_(3)adsorption on MnTiO_(x), which makes it possess excellent PSCR activity. This work provided an additional strategy to NO removal with PSCR catalysts and showed potential for use in photocatalysis.展开更多
High-surface-area mesoprous powders of γ-Al2O3 doped with Cu^2+, Cr^3+, and V^3+ ions were prepared uia a modified sol-gel method and were investigated as catalysts for the oxidation of chlorinated organic compoun...High-surface-area mesoprous powders of γ-Al2O3 doped with Cu^2+, Cr^3+, and V^3+ ions were prepared uia a modified sol-gel method and were investigated as catalysts for the oxidation of chlorinated organic compounds. The composites retained high surface areas and pore volumes comparable with those of undoped γ-Al2O3 and the presence of the transition metal ions enhanced their surface acidic properties. The catalytic activity of the prepared catalysts in the oxidation of 1,2-dichloroethane (DCE) was studied in the temperature range of 250-400℃. The catalytic activity and product selectivity were strongly dependent on the presence and the type of dopant ion. While Cu^2+- and Cr^3+-containing catalysts showed 100% conversion at 300℃ and 350℃, V3+-containing catalyst showed considerably lower conversion. Furthermore, while the major products of the reactions over γ-alumina were vinyl chloride (C2H3Cl) and hydrogen chloride (HCl) at all temperatures, Cu- and Cr-doped catalysts showed siguiticantly stronger capability for deep oxidation to CO2.展开更多
Advanced oxidation processes have been widely studied for organic pollutants treatment in water,but the degradation performance of radical-dominated pathway was severely inhibited by the side reactions between the ani...Advanced oxidation processes have been widely studied for organic pollutants treatment in water,but the degradation performance of radical-dominated pathway was severely inhibited by the side reactions between the anions and radicals,especially in high salinity conditions.Here,a singlet oxygen(^(1)O_(2))-dominated non-radical process was developed for organic pollutants degradation in high salinity wastewater,with layered crednerite(CuMnO_(2))as catalysts and peroxymonosulfate(PMS)as oxidant.Based on the experiments and density functional theory calculations,^(1)O_(2)was the dominating reactive species and the constructed Cu-O-Mn with electron-deficient Mn captured electron from PMS promoting the generation of^(1)O_(2).The rapid degradation of bisphenol A(BPA)was achieved by CuMnO_(2)/PMS system,which was 5-fold and 21-fold higher than that in Mn_(2)O_(3)/PMS system and Cu_(2)O/PMS system.The CuMnO_(2)/PMS system shown prominent BPA removal performance under high salinity conditions,prominent PMS utilization efficiency,outstanding total organic carbon removal rate,wide range of applicable pH and good stability.This work unveiled that the^(1)O_(2)-dominated non-radical process of CuMnO_(2)/PMS system overcame the inhibitory effect of anions in high salinity conditions,which provided a promising technique to remove organic pollutants from high saline wastewater.展开更多
The further improvement of methacrolein(MAL)selectivity from isobutene(IB)oxidation is crucial and challenging.In this study,based on the typical Mo-Bi-Fe-Co-K-O mixed metal oxide,the rare earth element Gd-doped,Ce-do...The further improvement of methacrolein(MAL)selectivity from isobutene(IB)oxidation is crucial and challenging.In this study,based on the typical Mo-Bi-Fe-Co-K-O mixed metal oxide,the rare earth element Gd-doped,Ce-doped and CeGd co-doped catalysts were prepared by co-precipitation strategy to increase the selectivity of MAL from 47.9%to 49.8%,64.2% and 68.6%,respectively.In order to elucidate in-depth the promoting effect of Ce and/or Gd,various characterizations were utilized including X-ray diffraction patterns(XRD),Raman,X-ray fluorescence spectrometry(XRF),X-ray photoelectron spectroscopy(XPS),O_(2)-temperature programmed desorption(O_(2)-TPD),H2-temperature programmed reduction(H2-TPR),CO_(2)-temperature programmed desorption(CO_(2)-TPD),IB-temperature programmed desorption(i-C4-TPD)and in-situ IB-Fourier transform infrared spectroscopy(IB-FTIR).Both Ce and Gd finely regulate the bulk and surface structure of the catalyst,thus altering the redox ability,oxygen mobility and storage ability and basicity.Compared with Ce,Gd addition slightly regulates the variation of Co^(2+)/Co^(3+)redox couples,greatly enhances the interaction among the components on the catalyst,thus only increases the content of surface oxygen species and has little effect on their mobility.While Cecontaining catalyst performs stronger oxygen storage and migration ability,thus leading to the overproduction of surface Odefectspecies,which are proposed to be the active sites for the production of MAL and COx.The CeGd co-doped catalyst possesses the proper content of surface Odefectspecies,thus exhibits much higher MAL selectivity.Moreover,the promoting mechanism of Ce and/or Gd over IB oxidation is proposed.Therefore,this work is helpful for understanding the influence of rare earth elements on the structure of mixed metal oxides and the olefin selective oxidation reaction.展开更多
This review focused on rare-earth elements containing inorganic semiconductor photocatalysts for efficient solar energy conversion. We also summarized the recent progress in the modification of the transition metal ox...This review focused on rare-earth elements containing inorganic semiconductor photocatalysts for efficient solar energy conversion. We also summarized the recent progress in the modification of the transition metal oxides and mixed oxides with rare earth ions. In the first section, we surveyed a variety of rare-earth elements modified TiO2 photocatalysts. Attributed to the modifica-tion with rare-earth elements, phase transformation of TiO2 from anatase to rutile was inhibited. Furthermore, the light-absorbing property of the TiO2 modified with rare-earth elements was also enhanced. In the second section, we summarized the effects of rare-earth elements on the modification of transition metal mixed oxides. It was believed that the corner-shared octahedral units in the form of networks, chains and slabs within the mixed oxide lattice were essential for the enhancement of the photocatalytic activity. In the last section, the strategy for the design of NIR or IR response upconversion composite photocatalysts was also discussed.展开更多
基金Financial support from the National Key Research and Development Program of China(2022YFB3805602)the National Natural Science Foundation of China(22138001,22288102)the Fundamental Research Funds for the Central Universities。
文摘Glycerol carbonate,an important glycerol value-added product,has been widely used as an active intermediate and inert solvent in the synthesis of cosmetics,detergents,chemical intermediates,polymers,and so on.The direct carbonylation from glycerol with CO_(2)is considered a promising route,but still tough work due to the thermodynamic stability and the kinetic inertness of CO_(2).In this work,highlyselective direct carbonylation of glycerol and CO_(2)into glycerol carbonate has been achieved over highly dispersed MgInCe-mixed metal oxides(MgInCe-MMO),which were prepared through the topological transformation derived from the MgInCe-layered double hydroxides(MgInCe-LDHs).By precisely modulating the surface basic-acidic properties and the oxygen vacancies,an efficient carbonylation of glycerol with CO_(2)has been achieved with a selectivity of up to>99%to glycerol carbonate.Deep investigation into the synergistic catalysis of base-acid sites and oxygen vacancies has been clarified.
基金supported by the Shanghai Agricultural Science and Technology Program (2022-02-08-00-12-F01176)he National Natural Science Foundation of China (52006135)
文摘Direct air capture(DAC)of CO_(2)plays an indispensable role in achieving carbon-neutral goals as one of the key negative emission technologies.Since large air flows are required to capture the ultradilute CO_(2)from the air,lab-synthesized adsorbents in powder form may cause unacceptable gas pressure drops and poor heat and mass transfer efficiencies.A structured adsorbent is essential for the implementation of gas-solid contactors for cost-and energy-efficient DAC systems.In this study,efficient adsorbent poly(ethyleneimine)(PEI)-functionalized Mg-Al-CO_(3)layered double hydroxide(LDH)-derived mixed metal oxides(MMOs)are three-dimensional(3D)printed into monoliths for the first time with more than 90%adsorbent loadings.The printing process has been optimized by initially printing the LDH powder into monoliths followed by calcination into MMO monoliths.This structure exhibits a 32.7%higher specific surface area and a 46.1%higher pore volume,as compared to the direct printing of the MMO powder into a monolith.After impregnation of PEI,the monolith demonstrates a large adsorption capacity(1.82 mmol/g)and fast kinetics(0.7 mmol/g/h)using a CO_(2)feed gas at 400 ppm at 25℃,one of the highest values among the shaped DAC adsorbents.Smearing of the amino-polymers during the post-printing process affects the diffusion of CO_(2),resulting in slower adsorption kinetics of pre-impregnation monoliths compared to post-impregnation monoliths.The optimal PEI/MeOH ratio for the post-impregnation solution prevents pores clogging that would affect both adsorption capacity and kinetics.
基金supported by the National Key R&D Program of China(2017YFC0211503,2016YFC0207100)the Strategic Priority Research Program(A)of the Chinese Academy of Sciences(XDA23030300)+2 种基金the National Natural Science Foundation of China(21401200,51672273)the Open Research Fund of State Key Laboratory of Multi-phase Complex Systems(MPCS-2017-D-06)the Young Talent Project of the Center for Excellence in Regional Atmospheric Environment,CAS(CERAE201805)~~
文摘Catalytic oxidation is regarded as one of the most promising strategies for volatile organic compounds(VOCs)purification.Mixed metal oxides(MMOs),after topological transformation using layered double hydroxides(LDHs)as precursors,are extensively used as catalysts for VOCs oxidation due to their uniformity advantage.This review summarizes the developments in the LDH-derived VOCs heterogeneous catalytic oxidation over the last 10 years.Particularly,it addresses the VOCs abatement performance over MMO,noble metal/MMO,core-shell structured MMO,and integral MMO film catalysts originating from LDHs.Moreover,it highlights the water vapor effect and oxidation mechanism.This review indicates that LDH-based catalysts are a category of important VOCs oxidation materials.
基金the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA23050104)the National Natural Science Foundation of China(Nos.41776090,41976032)+1 种基金the Key Research and Development Program of Shandong Province(No.2018GHY115038)the AoShan Talent Program Supported by Qingdao National Laboratory for Marine Science and Technology。
文摘Marine biofouling is an expensive problem that needs evolved chemical or physical antifouling strategies.However,most of the current antifouling materials that would damage the environment through metal leaching and bacteria resistance are being halted.Nanozyme is one kind of environmental antifouling materials through generating reactive oxygen species(ROS).We prepared various contents of CeO2 that could uniform disperse compounding with Co3 O4 and CoAl2 O4 to form a stable Co-Al-Ce mixed metal oxide(MMO) by a layered double hydroxide derived method.We find that coupling with CeO2 can improve the peroxidase(POx) activity.When the molar ratio of Ce is 2.5% and the calcination temperature is 200℃,the POx activity of Co-Al-Ce MMO is the best caused by the good dispersion of catalytically active components and the high specific area(150.10±4.95 m2/g).This novel Co-Al-Ce MMO also exhibits an antibacterial mode of action Gram-negative bacteria in near-neutral pH solution through generating ROS(mainly ·O2-)in the presence of H2 O2.Ce containing MMO can be utilized as potential green marine antifouling material.
基金supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIT) (RS-2023-00210114)supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2021R1C1C1004264 and NRF2021R1A4A1032114)+1 种基金supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIT) (NRF-2022R1A4A1019296)supported by the National R&D Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Science and ICT (2021M3D1A2051636)。
文摘Mixed metal oxide(MMO) represents a critical class of materials that can allow for obtaining a dynamic interface between its components:reduced metal and its metal oxide counterpart during an electrocatalytic reaction.Here,a synthetic method utilizing a MOF-derived micro/mesoporous carbon as a template to prepare sub-2 nm MMO catalysts for CO_(2) electro reduction is reported.Starting from the zeolite imidazolate framework(ZIF-8),the pyrolyzed derivatives were used to synthesize sub-2 nm Pd-Ni MMO with different compositions.The Ni-rich(Pd_(20)-Ni_(80)/ZC) catalyst exhibits unexpectedly superior performance for CO production with an improved Faradaic efficiency(FE) of 95.3% at the current density of 200 mA cm^(-2) at-0.56 V vs.reversible hydrogen electrode(RHE) compared to other Pd-Ni compositions.X-ray photoelectron spectroscopy(XPS) analysis confirms the presence of Ni^(2+) and Pd^(2+) in all compositions,demonstrating the presence of MMO.Density functional theory(DFT) calculation reveals that the lower CO binding energy on the surface of the Pd_(20)-Ni_(80) cluster eases CO desorption,thus increasing its production.This work provides a general synthetic strategy for MMO electrocatalysts and can pave a new way for screening multimetallic catalysts with a dynamic electrochemical interface.
基金support from the research grant"The 90th Anniversary of Chulalongkorn University Fund" from the Graduate School,Chulalongkorn University
文摘MgAl and MgMAl oxides(M = Co,Ni and Cu) with a Mg:M:Al molar ratio = 4:1:1 were synthesized from the calcination of their corresponding layered double hydroxide(LDHs) precursors.Their catalytic activities were examined for the oxidation of ethylbenzene using tert-butylhydroperoxide(TBHP) as an oxidant.The oxidized product was mainly acetophenone.The catalytic activities were in the order of MgCuAlMgNiAl~NiAl~MgCoAl~CoAlCuAlMgAl oxides.Reusability studies show that the catalysts are stable under the reaction conditions.
基金supported by the National Natural Science Foundation of China(Nos.21676225 and 21776236)Natural Science Foundation of Hunan Province(2018JJ2384)+2 种基金Fund of Hunan Provincial Education Department(19A478)Collaborative Innovation Centre of New Chemical Technologies for Environmental Benignity and Efficient Resource UtilizationEngineering Research Centre of Chemical Process Simulation and Optimization of Ministry of Education。
文摘To enhance the hydrogen release during hydrogen storage,several Pt-Ir supported on Mg-Al mixed oxide catalysts were prepared and then applied into the dehydrogenation of methylcyclohexane(MCH)in this study.The effects of iridium content,reduction temperature on the activity and stability of the catalysts were studied in detail.In the presence of Ir,metal particle size was decrea sed and electron transfer between Ir and Pt was observed.High reduction temperature increased the metallic Ir content but enlarged the particle size of active site s.During the dehydrogenation reaction on Pt-Ir bimetallic catalyst,MCH was efficiently converted into toluene and PtIr-5/Mg-Al-275 exhibited the highe st activity.After prolonging the residence time and raising the reaction temperature to 350℃the conversion and hydrogen evolution rate were increased to 99.9%and 578.7 mmol·(g Pt)^-1·min^-1,respectively.Moreover,no carbon deposition was observed in the spent catalyst,presenting a high anti-coking ability and good potential for industrial application.
基金financial support by DST-SERB (Grant No.SRG/2021/001182)DRDO (Grant No.ARMREB/HEM/2021/241)is gratefully acknowledged。
文摘Ammonium dinitramide(ADN)based liquid monopropellants have been identified as environmentally benign substitutes for hydrazine monopropellant.However,new catalysts are to be developed for making ADN monopropellants cold-start capable.In the present study,performance of Co and Ba doped CuCr_2O_4 nanocatalysts prepared by hydrothermal method was evaluated on the decomposition of aqueous ADN solution and ADN liquid monopropellant(LMP103X).The catalysts were characterized by PXRD(Powder X-ray Diffraction),FTIR(Fourier Transform Infrared spectroscopy),SEM(Scanning Electron Microscopy),TEM(Transmission Electron Microscopy),EDS(Energy Dispersive X-ray Spectroscopy),and XPS(X-ray Photoelectron Spectroscopy).The nanosize was confirmed by SEM and TEM,while the nanoflake morphology was confirmed by the SEM analysis.Further,we obtained the elemental composition from the EDS analysis.We investigated the catalytic activity of the catalysts by thermogravimetric(TG)analysis and the developed catalysts lowered the decomposition temperature of ADN monopropellant by about 55℃.The XPS analysis confirmed the presence of metal ions with different chemical states.Apparently,increase in the surface area of the catalysts and the mixed active sites as well as the development of oxygen vacancy on the catalyst surface introduced by metal doping are influencing the decomposition temperature of ADN samples.
基金supported by the Fundamental Research Funds for the Central Universities (2019JQ03015)the National Natural Science Foundation of China (42075169, U1810209)the Beijing Municipal Education Commission through the Innovative Transdisciplinary Program “Ecological Restoration Engineering”。
文摘Due to the advantages of low energy consumption and high CO_(2) selectivity, the development of solid amine-based materials has been regarded as a hot research topic in the field of DAC for the past decades.The adsorption capacity and stability over multiple cycles have been the top priorities for evaluation of practical application value. Herein, we synthesized a novel DAC material by loading TEPA onto defect-rich Mg_(0.55)Al-O MMOs with enhanced charge transfer effect. The optimal Mg_(0.55)Al-O-TEPA67% demonstrates the highest CO_(2)uptake of(3.0 mmol g^(-1)) and excellent regenerability, maintaining ~90% of the initial adsorption amount after 80 adsorption/desorption cycles. The in situ DRIFTS experiments suggested the formation of bicarbonate species under wet conditions. DFT calculations indicated that the stronger bonding between Mg_(0.55)Al-O support and solid amine was caused by the abundance of oxygen defects on MMOs confirmed by XPS and ESR, which favors the charge transfer between the support and amine,resulting in intense interaction and excellent regenerability. This work for the first time conducted comprehensive and systematic investigation on the stabilization mechanism for MMOs supported solid amine adsorbents with highest uptake and superior cyclic stability in depth, which is different from the most popular SiO_(2)-support, thus providing facile strategy and comprehensive theoretical mechanism support for future research about DAC materials.
文摘Several Mo-V-Te-O mixed metal oxides catalysts with different dopant were prepared and used for catalytic oxidation propane to acrolein. It was revealed that the addition of P could greatly improve the performance of the Mo-V-Te-O catalyst. The catalysts were examined by XRD and H2-TPR. The XRD characteristic of the Mo-V-Te-P-O showed that the addition of P could aggrandize the (V0.07Mo0.93)5O14 phase. H2-TPR illuminated that the MoV0.3Te0.23P0.15On catalyst took on the best redox ability.
基金supported by Science and Technology Innovation Talents Program of Bingtuan (No.2019CB025)Major Scientific and Technological Project of Bingtuan (No.2018AA002)Project of Regional Innovation in Bingtuan (No.2021BB005)。
文摘Photo-assisted SCR(PSCR) offers a potential solution for removal of NO at room temperature. MnTiO_(x)as PSCR catalyst exhibits superior performance with NO removal of 100% at the room temperature. Electron paramagnetic resonance(EPR) analysis revealed the presence of numerous oxygen vacancies on MnTiO_(x). Optical carrier density functional theory(DFT) calculations showed that the threedimensional orbital hybridization of Mn and Ti is significantly enhanced under light irradiation. The MnTiO_(x)catalyst exhibited excellent electron–hole separation ability, which can adsorbe NH_(3)and dissociate to form NH_(2)fragments and H atoms. In-situ diffuse reflectance infrared fourier-transform spectroscopy(DRIFTS) indicated that the optical carrier enhanced NH_(3)adsorption on MnTiO_(x), which makes it possess excellent PSCR activity. This work provided an additional strategy to NO removal with PSCR catalysts and showed potential for use in photocatalysis.
基金United Arab Emirates University through NRF grant, 2011
文摘High-surface-area mesoprous powders of γ-Al2O3 doped with Cu^2+, Cr^3+, and V^3+ ions were prepared uia a modified sol-gel method and were investigated as catalysts for the oxidation of chlorinated organic compounds. The composites retained high surface areas and pore volumes comparable with those of undoped γ-Al2O3 and the presence of the transition metal ions enhanced their surface acidic properties. The catalytic activity of the prepared catalysts in the oxidation of 1,2-dichloroethane (DCE) was studied in the temperature range of 250-400℃. The catalytic activity and product selectivity were strongly dependent on the presence and the type of dopant ion. While Cu^2+- and Cr^3+-containing catalysts showed 100% conversion at 300℃ and 350℃, V3+-containing catalyst showed considerably lower conversion. Furthermore, while the major products of the reactions over γ-alumina were vinyl chloride (C2H3Cl) and hydrogen chloride (HCl) at all temperatures, Cu- and Cr-doped catalysts showed siguiticantly stronger capability for deep oxidation to CO2.
基金supported by the Open Fund of Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling (No.2020B121201003)the National Natural Science Foundation of China (Nos.21876099,22106088,and 22276110)+1 种基金the Key Research&Developmental Program of Shandong Province (No.2021CXGC011202)the Fundamental Research Funds of Shandong University (No.zy202102)。
文摘Advanced oxidation processes have been widely studied for organic pollutants treatment in water,but the degradation performance of radical-dominated pathway was severely inhibited by the side reactions between the anions and radicals,especially in high salinity conditions.Here,a singlet oxygen(^(1)O_(2))-dominated non-radical process was developed for organic pollutants degradation in high salinity wastewater,with layered crednerite(CuMnO_(2))as catalysts and peroxymonosulfate(PMS)as oxidant.Based on the experiments and density functional theory calculations,^(1)O_(2)was the dominating reactive species and the constructed Cu-O-Mn with electron-deficient Mn captured electron from PMS promoting the generation of^(1)O_(2).The rapid degradation of bisphenol A(BPA)was achieved by CuMnO_(2)/PMS system,which was 5-fold and 21-fold higher than that in Mn_(2)O_(3)/PMS system and Cu_(2)O/PMS system.The CuMnO_(2)/PMS system shown prominent BPA removal performance under high salinity conditions,prominent PMS utilization efficiency,outstanding total organic carbon removal rate,wide range of applicable pH and good stability.This work unveiled that the^(1)O_(2)-dominated non-radical process of CuMnO_(2)/PMS system overcame the inhibitory effect of anions in high salinity conditions,which provided a promising technique to remove organic pollutants from high saline wastewater.
基金supported by Petro China Innovation Foundation(2019D-5007-0404)。
文摘The further improvement of methacrolein(MAL)selectivity from isobutene(IB)oxidation is crucial and challenging.In this study,based on the typical Mo-Bi-Fe-Co-K-O mixed metal oxide,the rare earth element Gd-doped,Ce-doped and CeGd co-doped catalysts were prepared by co-precipitation strategy to increase the selectivity of MAL from 47.9%to 49.8%,64.2% and 68.6%,respectively.In order to elucidate in-depth the promoting effect of Ce and/or Gd,various characterizations were utilized including X-ray diffraction patterns(XRD),Raman,X-ray fluorescence spectrometry(XRF),X-ray photoelectron spectroscopy(XPS),O_(2)-temperature programmed desorption(O_(2)-TPD),H2-temperature programmed reduction(H2-TPR),CO_(2)-temperature programmed desorption(CO_(2)-TPD),IB-temperature programmed desorption(i-C4-TPD)and in-situ IB-Fourier transform infrared spectroscopy(IB-FTIR).Both Ce and Gd finely regulate the bulk and surface structure of the catalyst,thus altering the redox ability,oxygen mobility and storage ability and basicity.Compared with Ce,Gd addition slightly regulates the variation of Co^(2+)/Co^(3+)redox couples,greatly enhances the interaction among the components on the catalyst,thus only increases the content of surface oxygen species and has little effect on their mobility.While Cecontaining catalyst performs stronger oxygen storage and migration ability,thus leading to the overproduction of surface Odefectspecies,which are proposed to be the active sites for the production of MAL and COx.The CeGd co-doped catalyst possesses the proper content of surface Odefectspecies,thus exhibits much higher MAL selectivity.Moreover,the promoting mechanism of Ce and/or Gd over IB oxidation is proposed.Therefore,this work is helpful for understanding the influence of rare earth elements on the structure of mixed metal oxides and the olefin selective oxidation reaction.
基金Project supported by the National Natural Science Foundation of China(21271055,21471040)
文摘This review focused on rare-earth elements containing inorganic semiconductor photocatalysts for efficient solar energy conversion. We also summarized the recent progress in the modification of the transition metal oxides and mixed oxides with rare earth ions. In the first section, we surveyed a variety of rare-earth elements modified TiO2 photocatalysts. Attributed to the modifica-tion with rare-earth elements, phase transformation of TiO2 from anatase to rutile was inhibited. Furthermore, the light-absorbing property of the TiO2 modified with rare-earth elements was also enhanced. In the second section, we summarized the effects of rare-earth elements on the modification of transition metal mixed oxides. It was believed that the corner-shared octahedral units in the form of networks, chains and slabs within the mixed oxide lattice were essential for the enhancement of the photocatalytic activity. In the last section, the strategy for the design of NIR or IR response upconversion composite photocatalysts was also discussed.