In order to effectively restore color noisy images with the mixture of Gaussian noise and impulse noise,a new algorithm is proposed using the quaternion-based holistic processing idea for color images.First,a color im...In order to effectively restore color noisy images with the mixture of Gaussian noise and impulse noise,a new algorithm is proposed using the quaternion-based holistic processing idea for color images.First,a color image is represented by a pure quaternion matrix.Secondly,according to the different characteristics of the Gaussian noise and the impulse noise,an algorithm based on quaternion directional vector order statistics is used to detect the impulse noise. Finally,the quaternion optimal weights non-local means filter (QOWNLMF)for Gaussian noise removal is improved for the mixed noise removal.The detected impulse noise pixels are not considered in the calculation of weights.Experimental results on five standard images demonstrate that the proposed algorithm performs better than the commonly used robust outlyingness ratio-nonlocal means (ROR-NLM)algorithm and the optimal weights mixed filter (OWMF).展开更多
Due to the huge difference of noise distribution,the result of a mixture of multiple noises becomes very complicated.Under normal circumstances,the most common type of mixed noise is to add impulse noise(IN)and then w...Due to the huge difference of noise distribution,the result of a mixture of multiple noises becomes very complicated.Under normal circumstances,the most common type of mixed noise is to add impulse noise(IN)and then white Gaussian noise(AWGN).From the reduction of cascaded IN and AWGN to the latest sparse representation,a great deal of methods has been proposed to reduce this form of mixed noise.However,when the mixed noise is very strong,most methods often produce a lot of artifacts.In order to solve the above problems,we propose a method based on residual learning for the removal of AWGN-IN noise in this paper.By training,our model can obtain stable nonlinear mapping from the images with mixed noise to the clean images.After a series of experiments under different noise settings,the results show that our method is obviously better than the traditional sparse representation and patch based method.Meanwhile,the time of model training and image denoising is greatly reduced.展开更多
Tracking maneuvering target in real time autonomously and accurately in an uncertain environment is one of the challenging missions for unmanned aerial vehicles(UAVs).In this paper,aiming to address the control proble...Tracking maneuvering target in real time autonomously and accurately in an uncertain environment is one of the challenging missions for unmanned aerial vehicles(UAVs).In this paper,aiming to address the control problem of maneuvering target tracking and obstacle avoidance,an online path planning approach for UAV is developed based on deep reinforcement learning.Through end-to-end learning powered by neural networks,the proposed approach can achieve the perception of the environment and continuous motion output control.This proposed approach includes:(1)A deep deterministic policy gradient(DDPG)-based control framework to provide learning and autonomous decision-making capability for UAVs;(2)An improved method named MN-DDPG for introducing a type of mixed noises to assist UAV with exploring stochastic strategies for online optimal planning;and(3)An algorithm of taskdecomposition and pre-training for efficient transfer learning to improve the generalization capability of UAV’s control model built based on MN-DDPG.The experimental simulation results have verified that the proposed approach can achieve good self-adaptive adjustment of UAV’s flight attitude in the tasks of maneuvering target tracking with a significant improvement in generalization capability and training efficiency of UAV tracking controller in uncertain environments.展开更多
Based on the advantages and disadvantages of the standard median filter and the standard wean filter, a new Adaptive Weighted Mean Filter(AWFM) was proposed in this paper. The filter window's size of every pixel wa...Based on the advantages and disadvantages of the standard median filter and the standard wean filter, a new Adaptive Weighted Mean Filter(AWFM) was proposed in this paper. The filter window's size of every pixel was adaptively adjusted. Then the suspidons noise points were examined by certain rules. After that, the authors calculate the weighting factors of the pixels by weighting function which was canstructed according to the differences between their gray values and the median value of all elements in the window. Finally they use the weighted average of gray values to substitute the gray value of the central pixel in the window. The results indicate that this filtering method is not only effective for impulse noise like median filter, but also better than the standard median filters. Compared with conventional filter, this filter methed can effectivdy suppress the mixture noise of images, and protect image's details well.展开更多
In this paper,we elaborate on residual-driven Fuzzy C-Means(FCM)for image segmentation,which is the first approach that realizes accurate residual(noise/outliers)estimation and enables noise-free image to participate ...In this paper,we elaborate on residual-driven Fuzzy C-Means(FCM)for image segmentation,which is the first approach that realizes accurate residual(noise/outliers)estimation and enables noise-free image to participate in clustering.We propose a residual-driven FCM framework by integrating into FCM a residual-related regularization term derived from the distribution characteristic of different types of noise.Built on this framework,a weighted?2-norm regularization term is presented by weighting mixed noise distribution,thus resulting in a universal residual-driven FCM algorithm in presence of mixed or unknown noise.Besides,with the constraint of spatial information,the residual estimation becomes more reliable than that only considering an observed image itself.Supporting experiments on synthetic,medical,and real-world images are conducted.The results demonstrate the superior effectiveness and efficiency of the proposed algorithm over its peers.展开更多
Compressed sensing(CS) has achieved great success in single noise removal. However, it cannot restore the images contaminated with mixed noise efficiently. This paper introduces nonlocal similarity and cosparsity insp...Compressed sensing(CS) has achieved great success in single noise removal. However, it cannot restore the images contaminated with mixed noise efficiently. This paper introduces nonlocal similarity and cosparsity inspired by compressed sensing to overcome the difficulties in mixed noise removal, in which nonlocal similarity explores the signal sparsity from similar patches, and cosparsity assumes that the signal is sparse after a possibly redundant transform. Meanwhile, an adaptive scheme is designed to keep the balance between mixed noise removal and detail preservation based on local variance. Finally, IRLSM and RACoSaMP are adopted to solve the objective function. Experimental results demonstrate that the proposed method is superior to conventional CS methods, like K-SVD and state-of-art method nonlocally centralized sparse representation(NCSR), in terms of both visual results and quantitative measures.展开更多
基金The National Natural Science Foundation of China(No.61572258,61173141,61271312,61232016,61272421)the Natural Science Foundation of Jiangsu Province(No.BK2012858,BK20151530)+1 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.13KJB520015)Open Fund of Jiangsu Engineering Center of Network Monitoring(No.KJR1404)
文摘In order to effectively restore color noisy images with the mixture of Gaussian noise and impulse noise,a new algorithm is proposed using the quaternion-based holistic processing idea for color images.First,a color image is represented by a pure quaternion matrix.Secondly,according to the different characteristics of the Gaussian noise and the impulse noise,an algorithm based on quaternion directional vector order statistics is used to detect the impulse noise. Finally,the quaternion optimal weights non-local means filter (QOWNLMF)for Gaussian noise removal is improved for the mixed noise removal.The detected impulse noise pixels are not considered in the calculation of weights.Experimental results on five standard images demonstrate that the proposed algorithm performs better than the commonly used robust outlyingness ratio-nonlocal means (ROR-NLM)algorithm and the optimal weights mixed filter (OWMF).
基金supported in part by the National Natural Science Foundation of China under Grant 61601235,in part by the Natural Science Foundation of Jiangsu Province of China under Grant BK20160972.
文摘Due to the huge difference of noise distribution,the result of a mixture of multiple noises becomes very complicated.Under normal circumstances,the most common type of mixed noise is to add impulse noise(IN)and then white Gaussian noise(AWGN).From the reduction of cascaded IN and AWGN to the latest sparse representation,a great deal of methods has been proposed to reduce this form of mixed noise.However,when the mixed noise is very strong,most methods often produce a lot of artifacts.In order to solve the above problems,we propose a method based on residual learning for the removal of AWGN-IN noise in this paper.By training,our model can obtain stable nonlinear mapping from the images with mixed noise to the clean images.After a series of experiments under different noise settings,the results show that our method is obviously better than the traditional sparse representation and patch based method.Meanwhile,the time of model training and image denoising is greatly reduced.
基金The authors would like to acknowledge National Natural Science Foundation of China(Grant No.61573285,No.62003267)Aeronautical Science Foundation of China(Grant No.2017ZC53021)+1 种基金Open Fund of Key Laboratory of Data Link Technology of China Electronics Technology Group Corporation(Grant No.CLDL-20182101)Natural Science Foundation of Shaanxi Province(Grant No.2020JQ-220)to provide fund for conducting experiments.
文摘Tracking maneuvering target in real time autonomously and accurately in an uncertain environment is one of the challenging missions for unmanned aerial vehicles(UAVs).In this paper,aiming to address the control problem of maneuvering target tracking and obstacle avoidance,an online path planning approach for UAV is developed based on deep reinforcement learning.Through end-to-end learning powered by neural networks,the proposed approach can achieve the perception of the environment and continuous motion output control.This proposed approach includes:(1)A deep deterministic policy gradient(DDPG)-based control framework to provide learning and autonomous decision-making capability for UAVs;(2)An improved method named MN-DDPG for introducing a type of mixed noises to assist UAV with exploring stochastic strategies for online optimal planning;and(3)An algorithm of taskdecomposition and pre-training for efficient transfer learning to improve the generalization capability of UAV’s control model built based on MN-DDPG.The experimental simulation results have verified that the proposed approach can achieve good self-adaptive adjustment of UAV’s flight attitude in the tasks of maneuvering target tracking with a significant improvement in generalization capability and training efficiency of UAV tracking controller in uncertain environments.
基金supported by the University Independent innovation program of Jinan(No.200906005)the National Natural Science Foundation of Shandong Province(No.Y2008G31)
文摘Based on the advantages and disadvantages of the standard median filter and the standard wean filter, a new Adaptive Weighted Mean Filter(AWFM) was proposed in this paper. The filter window's size of every pixel was adaptively adjusted. Then the suspidons noise points were examined by certain rules. After that, the authors calculate the weighting factors of the pixels by weighting function which was canstructed according to the differences between their gray values and the median value of all elements in the window. Finally they use the weighted average of gray values to substitute the gray value of the central pixel in the window. The results indicate that this filtering method is not only effective for impulse noise like median filter, but also better than the standard median filters. Compared with conventional filter, this filter methed can effectivdy suppress the mixture noise of images, and protect image's details well.
基金supported in part by the Doctoral Students’Short Term Study Abroad Scholarship Fund of Xidian Universitythe National Natural Science Foundation of China(61873342,61672400,62076189)+1 种基金the Recruitment Program of Global Expertsthe Science and Technology Development Fund,MSAR(0012/2019/A1)。
文摘In this paper,we elaborate on residual-driven Fuzzy C-Means(FCM)for image segmentation,which is the first approach that realizes accurate residual(noise/outliers)estimation and enables noise-free image to participate in clustering.We propose a residual-driven FCM framework by integrating into FCM a residual-related regularization term derived from the distribution characteristic of different types of noise.Built on this framework,a weighted?2-norm regularization term is presented by weighting mixed noise distribution,thus resulting in a universal residual-driven FCM algorithm in presence of mixed or unknown noise.Besides,with the constraint of spatial information,the residual estimation becomes more reliable than that only considering an observed image itself.Supporting experiments on synthetic,medical,and real-world images are conducted.The results demonstrate the superior effectiveness and efficiency of the proposed algorithm over its peers.
基金supported by the National Natural Science Foundation of China(Nos.61403146 and 61603105)the Fundamental Research Funds for the Central Universities(No.2015ZM128)the Science and Technology Program of Guangzhou in China(Nos.201707010054 and 201704030072)
文摘Compressed sensing(CS) has achieved great success in single noise removal. However, it cannot restore the images contaminated with mixed noise efficiently. This paper introduces nonlocal similarity and cosparsity inspired by compressed sensing to overcome the difficulties in mixed noise removal, in which nonlocal similarity explores the signal sparsity from similar patches, and cosparsity assumes that the signal is sparse after a possibly redundant transform. Meanwhile, an adaptive scheme is designed to keep the balance between mixed noise removal and detail preservation based on local variance. Finally, IRLSM and RACoSaMP are adopted to solve the objective function. Experimental results demonstrate that the proposed method is superior to conventional CS methods, like K-SVD and state-of-art method nonlocally centralized sparse representation(NCSR), in terms of both visual results and quantitative measures.