期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Design factors affecting the dynamic performance of soil suspension in an agitated, baffled tank
1
作者 M.Moayeri Kashani S.H.Lai +1 位作者 S.Ibrahim P.Moradi Bargani 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第12期1664-1673,共10页
The effects of particle size, impeller clearance and impeller speed are assessed to show how condition variations influence power consumption in the water-solid slurry suspension in an agitated tank. The energy effici... The effects of particle size, impeller clearance and impeller speed are assessed to show how condition variations influence power consumption in the water-solid slurry suspension in an agitated tank. The energy efficiency of slurry height variation, impeller type and diameter, and solid movement speed has been investigated with six soil series stirred in a soil-water slurry. Coarser sand particles are observed to significantly increase power consumption, while finer particles, for instance clay, decrease the stirring power requirement. The 3-blade HR100 SUPERMIX? impeller manufactured by SATAKE generally performs more efficiently than a conventional4-pitched blade turbine. The impeller's geometric design, including diameter and number of blades influences the impeller's energy efficiency, and HR100 impellers with greater diameters remarkably reduce power consumption. The tests demonstrated that the power required to provide off-bottom solid suspension and solid dispersion can be reduced dramatically by increasing the slurry height rather than by accelerating the impeller, if this option is possible. 展开更多
关键词 Energy efficiency Stirred tank Water-solid slurry Mixing Solid suspension Impeller geometry
下载PDF
Vehicle height and leveling control of electronically controlled air suspension using mixed logical dynamical approach 被引量:7
2
作者 SUN Xiao Qiang CAI Ying Feng +2 位作者 YUAN Chao Chun WANG Shao Hua CHEN Long 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第12期1814-1824,共11页
Vehicle height and leveling control of electronically controlled air suspension(ECAS) still poses theoretical challenges for researchers that have not been adequately addressed in prior research. This paper investigat... Vehicle height and leveling control of electronically controlled air suspension(ECAS) still poses theoretical challenges for researchers that have not been adequately addressed in prior research. This paper investigates the design and verification of a new controller to adjust the vehicle height and to regulate the roll and pitch angles of the vehicle body(leveling control) during the height adjustment procedures. A nonlinear mechanism model of the vehicle height adjustment system is formulated to describe the dynamic behaviors of the system. By using mixed logical dynamical(MLD) approach, a novel control strategy is proposed to adjust the vehicle height by controlling the on-off statuses of the solenoid valves directly. On this basis, a correction algorithm is also designed to regulate the durations of the on-off statuses of the solenoid valves based on pulse width modulated(PWM) technology, thus the effective leveling control of the vehicle body can be guaranteed. Finally, simulations and vehicle tests results are presented to demonstrate the effectiveness and applicability of the proposed control methodology. 展开更多
关键词 electronically controlled air suspension vehicle height control leveling control hybrid system mixed logical dynamical approach
原文传递
A single-cell encapsulation method based on a microfluidic multi-step droplet splitting system 被引量:1
3
作者 Chun-Guang Yang Ru-Yi Pan Zhang-Run Xu 《Chinese Chemical Letters》 SCIE CAS CSCD 2015年第12期1450-1454,共5页
Single cell analysis is of great significance to understand the physiological activity of organisms.Microfluidic droplet is an ideal analytical platform for single-cell analysis. We developed a microfluidic droplet sp... Single cell analysis is of great significance to understand the physiological activity of organisms.Microfluidic droplet is an ideal analytical platform for single-cell analysis. We developed a microfluidic droplet splitting system integrated with a flow-focusing structure and multi-step splitting structures to form 8-line droplets and encapsulate single cells in the droplets. Droplet generation frequency reached1021 Hz with the aqueous phase flow rate of 1 m L/min and the oil phase flow rate of 15 mL /min. Relative standard deviation of the droplet size was less than 5% in a single channel, while less than 6% in all the8 channels. The system was used for encapsulating human whole blood cells. A single-cell encapsulation efficiency of 31% was obtained with the blood cell concentration of 2.5 ? 104cells/mL, and the multicellular droplet percentage was only 1.3%. The multi-step droplet splitting system for single cell encapsulation featured simple structure and high throughput. 展开更多
关键词 encapsulation droplet splitting throughput disperse suspension deviation physiological focusing mixing
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部