期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Electrochemical hydrogen storage characteristics of nanocrystalline and amorphous Mg_2Ni-type alloys prepared by melt-spinning 被引量:4
1
作者 张羊换 吕科 +3 位作者 赵栋梁 郭世海 祁焱 王新林 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第3期502-511,共10页
The nanocrystalline and amorphous Mg2Ni-type alloys with nominal compositions of Mg2Ni1-xMnx (x=0, 0.1, 0.2, 0.3, 0.4) were synthesized by melt-spinning technique. The spun alloy ribbons with a continuous length, a ... The nanocrystalline and amorphous Mg2Ni-type alloys with nominal compositions of Mg2Ni1-xMnx (x=0, 0.1, 0.2, 0.3, 0.4) were synthesized by melt-spinning technique. The spun alloy ribbons with a continuous length, a thickness of about 30 μm and a width of about 25 mm are obtained. The structures of the as-spun alloy ribbons were characterized by XRD and HRTEM. The electrochemical hydrogen storage characteristics of the as-spun alloy ribbons were measured by an automatic galvanostatic system. The electrochemical impedance spectrums (EIS) were plotted by an electrochemical workstation. The hydrogen diffusion coefficients (D) in the alloys were calculated by virtue of potential-step measurement. The results show that all the as-spun (x=0) alloys hold a typical nanocrystalline structure, whereas the as-spun (x=0.4) alloy displays a nanocrystalline and amorphous structure, confirming that the substitution of Mn for Ni facilitates the glass formation in the Mg2Ni-type alloy. The substitution of Mn for Ni significantly improves the electrochemical hydrogen storage performances of the alloys, involving the discharge capacity and the electrochemical cycle stability. With an increase in the amount of Mn substitution from 0 to 0.4, the discharge capacity of the as-spun (20 m/s) alloy increases from 96.5 to 265.3 mA·h/g, and its capacity retaining rate (S20) at the 20th cycle increases from 31.3% to 70.2%. Furthermore, the high rate dischargeability (HRD), electrochemical impedance spectrum and potential-step measurements all indicate that the electrochemical kinetics of the alloy electrodes first increases then decreases with raising the amount of Mn substitution. 展开更多
关键词 Mg2Ni-type alloy electrochemical hydrogen storage MELT-SPINNING substituting Ni with mn
下载PDF
Structural, morphological, dielectrical and magnetic properties of Mn substituted cobalt ferrite
2
作者 S.P.Yadav S.S.Shinde +1 位作者 A.A.Kadam K.Y.Rajpure 《Journal of Semiconductors》 EI CAS CSCD 2013年第9期16-20,共5页
The C01-xMnxFez04 (0 ≤ x 〈-5 0.5) ferrite system is synthesized by using an auto combustion technique using metal nitrates. The influence of Mn substitution on the structural, electrical, impedance and magnetic pr... The C01-xMnxFez04 (0 ≤ x 〈-5 0.5) ferrite system is synthesized by using an auto combustion technique using metal nitrates. The influence of Mn substitution on the structural, electrical, impedance and magnetic properties of cobalt ferrite is reported. X-ray diffraction patterns of the prepared samples confirm that the Bragg's peak belongs to a spinel cubic crystal structure. The lattice constant of cobalt ferrite increases with the increase in Mn content. The microstructural study is carried out by using the SEM technique and the average grain size continues to increase with increasing manganese content. AC conductivity analysis suggests that the conduction is due to small polaron hopping. DC electrical resistivity decreases with increasing temperature for a Col-xMnxFe204 system showing semiconducting behavior. The activation energy is found to be higher in the paramagnetic region than the ferromagnetic region. Curie temperature decreases with Mn substitution in the host ferrite system. Dielectric dispersion having Maxwell-Wagner-type interfacial polarization has been observed for cobalt ferrite samples. Magnetic properties have been studied by measuring M-H plots. The saturation and remanent magnetization increases with Mn substitution. 展开更多
关键词 COMBUSTION mn substitution STRUCTURAL DIELECTRIC magnetic
原文传递
Study on Oxidation Activity of CuCeZrO_x Doped with K for Diesel Engine Particles in NO/O_2
3
作者 WANG Kexin GUAN Bin +3 位作者 LI Ke ZHAN Rijing LIN He HUANG Zhen 《Journal of Shanghai Jiaotong university(Science)》 EI 2018年第S1期18-27,共10页
CuCeZrO_x and KCuCeZrO_x catalysts were synthesized and coated on the blank diesel particulate filter(DPF)substrate and a particulate matter(PM)loading apparatus was used for soot loading.The catalytic performances of... CuCeZrO_x and KCuCeZrO_x catalysts were synthesized and coated on the blank diesel particulate filter(DPF)substrate and a particulate matter(PM)loading apparatus was used for soot loading.The catalytic performances of soot oxidation were evaluated by temperature programmed combustion(TPC)test and characterization tests were conducted to investigate the physicochemical properties of the catalysts.The reaction mechanism in the oxidation process was analyzed with diffuse reflectance infrared Fourier transform spectroscopy.The results demonstrated that CuCeZrO_x catalyst exhibited high activities of soot oxidation at low temperature and the best results have been attained with Cu_(0.9)Ce_(0.05)Zr_(0.05)O_x over which the maximum soot oxidation rate decreased to 410~?C.Characterization tests have shown that catalysts containing 90%Cu have uniformly distributed grains and small particle sizes,which provide excellent oxidation activity by providing more active sites and forming a good bond between the catalyst and the soot.The low-temperature oxidation activity of soot could be further optimized due to the excellent elevated NO’s conversion rate by partially substituting Cu with K.The maximum particle oxidation rate can be easily realized at such a low temperature as 347~?C. 展开更多
关键词 self-propagating high-temperature synthesis(SHS) mn and Ce substitution low temperature activity N2 selectivity H2O and SO2 poisoning in situ diffused reflectance infrared Fourier transform spectroscopy(DRIFTS)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部